We have a Python script that needs to locate coredump path during
debugging so that we can retrieve certain metadata files associated with
it. Currently, there is no API for this.
This patch adds a new `SBProcess::GetCoreFile()` to retrieve target dump
file spec used for dump debugging. Note: this is different from the main
executable module spec. To achieve this, the patch hoists m_core_file
into PostMortemProcess for sharing.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
Adding command interpreter statistics into "statistics dump" command so
that we can track the command usage frequency for telemetry purpose.
This is useful to answer questions like what is the most frequently used
lldb commands across all our users.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
There are 3 ways to create an EventDataBytes object: (const char *),
(llvm::StringRef), and (const void *, size_t len). All of these cases
can be handled under `llvm::StringRef`. Additionally, this allows us to
remove the otherwise unused `SetBytes`, `SwapBytes`, and
`SetBytesFromCString` methods.
LLVM supports DWARF 5 linetable extension to store source files inline
in DWARF. This is particularly useful for compiler-generated source
code. This implementation tries to materialize them as temporary files
lazily, so SBAPI clients don't need to be aware of them.
rdar://110926168
The function was using the default version of ValueObject::Dump, which
has a default of using the synthetic-ness of the top-level value for
determining whether to print _all_ values as synthetic. This resulted in
some unusual behavior, where e.g. a std::vector is stringified as
synthetic if its dumped as the top level object, but in its raw form if
it is a member of a struct without a pretty printer.
The SBValue class already has properties which determine whether one
should be looking at the synthetic view of the object (and also whether
to use dynamic types), so it seems more natural to use that.
This patch revives the effort to get this Phabricator patch into
upstream:
https://reviews.llvm.org/D137900
This patch was accepted before in Phabricator but I found some
-gsimple-template-names issues that are fixed in this patch.
A fixed up version of the description from the original patch starts
now.
This patch started off trying to fix Module::FindFirstType() as it
sometimes didn't work. The issue was the SymbolFile plug-ins didn't do
any filtering of the matching types they produced, and they only looked
up types using the type basename. This means if you have two types with
the same basename, your type lookup can fail when only looking up a
single type. We would ask the Module::FindFirstType to lookup "Foo::Bar"
and it would ask the symbol file to find only 1 type matching the
basename "Bar", and then we would filter out any matches that didn't
match "Foo::Bar". So if the SymbolFile found "Foo::Bar" first, then it
would work, but if it found "Baz::Bar" first, it would return only that
type and it would be filtered out.
Discovering this issue lead me to think of the patch Alex Langford did a
few months ago that was done for finding functions, where he allowed
SymbolFile objects to make sure something fully matched before parsing
the debug information into an AST type and other LLDB types. So this
patch aimed to allow type lookups to also be much more efficient.
As LLDB has been developed over the years, we added more ways to to type
lookups. These functions have lots of arguments. This patch aims to make
one API that needs to be implemented that serves all previous lookups:
- Find a single type
- Find all types
- Find types in a namespace
This patch introduces a `TypeQuery` class that contains all of the state
needed to perform the lookup which is powerful enough to perform all of
the type searches that used to be in our API. It contain a vector of
CompilerContext objects that can fully or partially specify the lookup
that needs to take place.
If you just want to lookup all types with a matching basename,
regardless of the containing context, you can specify just a single
CompilerContext entry that has a name and a CompilerContextKind mask of
CompilerContextKind::AnyType.
Or you can fully specify the exact context to use when doing lookups
like: CompilerContextKind::Namespace "std"
CompilerContextKind::Class "foo"
CompilerContextKind::Typedef "size_type"
This change expands on the clang modules code that already used a
vector<CompilerContext> items, but it modifies it to work with
expression type lookups which have contexts, or user lookups where users
query for types. The clang modules type lookup is still an option that
can be enabled on the `TypeQuery` objects.
This mirrors the most recent addition of type lookups that took a
vector<CompilerContext> that allowed lookups to happen for the
expression parser in certain places.
Prior to this we had the following APIs in Module:
```
void
Module::FindTypes(ConstString type_name, bool exact_match, size_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeList &types);
void
Module::FindTypes(llvm::ArrayRef<CompilerContext> pattern, LanguageSet languages,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types);
void Module::FindTypesInNamespace(ConstString type_name,
const CompilerDeclContext &parent_decl_ctx,
size_t max_matches, TypeList &type_list);
```
The new Module API is much simpler. It gets rid of all three above
functions and replaces them with:
```
void FindTypes(const TypeQuery &query, TypeResults &results);
```
The `TypeQuery` class contains all of the needed settings:
- The vector<CompilerContext> that allow efficient lookups in the symbol
file classes since they can look at basename matches only realize fully
matching types. Before this any basename that matched was fully realized
only to be removed later by code outside of the SymbolFile layer which
could cause many types to be realized when they didn't need to.
- If the lookup is exact or not. If not exact, then the compiler context
must match the bottom most items that match the compiler context,
otherwise it must match exactly
- If the compiler context match is for clang modules or not. Clang
modules matches include a Module compiler context kind that allows types
to be matched only from certain modules and these matches are not needed
when d oing user type lookups.
- An optional list of languages to use to limit the search to only
certain languages
The `TypeResults` object contains all state required to do the lookup
and store the results:
- The max number of matches
- The set of SymbolFile objects that have already been searched
- The matching type list for any matches that are found
The benefits of this approach are:
- Simpler API, and only one API to implement in SymbolFile classes
- Replaces the FindTypesInNamespace that used a CompilerDeclContext as a
way to limit the search, but this only worked if the TypeSystem matched
the current symbol file's type system, so you couldn't use it to lookup
a type in another module
- Fixes a serious bug in our FindFirstType functions where if we were
searching for "foo::bar", and we found a "baz::bar" first, the basename
would match and we would only fetch 1 type using the basename, only to
drop it from the matching list and returning no results
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
(cherry picked from commit fc6b72523f3d73b921690a713e97a433c96066c6)
...and follow ups.
As it has caused test failures on Linux Arm and AArch64:
https://lab.llvm.org/buildbot/#/builders/96/builds/49126https://lab.llvm.org/buildbot/#/builders/17/builds/45824
```
lldb-shell :: Subprocess/clone-follow-child-wp.test
lldb-shell :: Subprocess/fork-follow-child-wp.test
lldb-shell :: Subprocess/vfork-follow-child-wp.test
```
This reverts commit a6c62bf1a4717accc852463b664cd1012237d334,
commit a0a1ff3ab40e347589b4e27d8fd350c600526735 and commit
fc6b72523f3d73b921690a713e97a433c96066c6.
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
Add a new API in SBTarget to Load Core from a SBFile.
This will enable a target to load core from a file descriptor.
So that in coredumper, we don't need to write core file to disk, instead
we can pass the input file descriptor to lldb directly.
Test:
```
(lldb) script
Python Interactive Interpreter. To exit, type 'quit()', 'exit()' or Ctrl-D.
>>> file_object = open("/home/hyubo/210hda79ms32sr0h", "r")
>>> fd=file_object.fileno()
>>> file = lldb.SBFile(fd,'r', True)
>>> error = lldb.SBError()
>>> target = lldb.debugger.CreateTarget(None)
>>> target.LoadCore(file,error)
SBProcess: pid = 56415, state = stopped, threads = 1
```
The Watchpoint and Breakpoint objects try to track the hardware index
that was used for them, if they are hardware wp/bp's. The majority of
our debugging goes over the gdb remote serial protocol, and when we set
the watchpoint/breakpoint, there is no (standard) way for the remote
stub to communicate to lldb which hardware index was used. We have an
lldb-extension packet to query the total number of watchpoint registers.
When a watchpoint is hit, there is an lldb extension to the stop reply
packet (documented in lldb-gdb-remote.txt) to describe the watchpoint
including its actual hardware index,
<addr within wp range> <wp hw index> <actual accessed address>
(the third field is specifically needed for MIPS). At this point, if the
stub reported these three fields (the stub is only required to provide
the first), we can know the actual hardware index for this watchpoint.
Breakpoints are worse; there's never any way for us to be notified about
which hardware index was used. Breakpoints got this as a side effect of
inherting from StoppointSite with Watchpoints.
We expose the watchpoint hardware index through "watchpoint list -v" and
through SBWatchpoint::GetHardwareIndex.
With my large watchpoint support, there is no *single* hardware index
that may be used for a watchpoint, it may need multiple resources. Also
I don't see what a user is supposed to do with this information, or an
IDE. Knowing the total number of watchpoint registers on the target, and
knowing how many Watchpoint Resources are currently in use, is helpful.
Knowing how many Watchpoint Resources
a single user-specified watchpoint needed to be implemented is useful.
But knowing which registers were used is an implementation detail and
not available until we hit the watchpoint when using gdb remote serial
protocol.
So given all that, I'm removing watchpoint hardware index numbers. I'm
changing the SB API to always return -1.
When this option gets enabled, descriptions of threads will be generated
using the format provided in the launch configuration instead of
generating it manually in the dap code. This allows lldb-dap to show an
output similar to the one in the CLI.
This is very similar to https://github.com/llvm/llvm-project/pull/71843
When this option gets enabled, descriptions of stack frames will be
generated using the format provided in the launch configuration instead
of simply calling `SBFrame::GetDisplayFunctionName`. This allows
lldb-dap to show an output similar to the one in the CLI.
This was causing some process to wrongfully be handled by ProcessTrace.
The only place this was being used is in the intel pt plugin, but it
doesn't even build anymore, so I'm sure no one is using it.
This completes the conversion of LocateSymbolFile into a SymbolLocator
plugin. The only remaining function is DownloadSymbolFileAsync which
doesn't really fit into the plugin model, and therefore moves into the
SymbolLocator class, while still relying on the plugins to do the
underlying work.
This builds on top of the work started in c3a302d to convert
LocateSymbolFile to a SymbolLocator plugin. This commit moves
DownloadObjectAndSymbolFile.
Plugins aren't exported by default in the msvc path because we
explicitly limit the symbols exported to prevent hitting the symbol export limit.
Some plugins, however, can still be useful for downstream projects to
build on, e.g. the Mojo language uses parts of the dwarf plugin to
implement dwarf handling within its debugger plugin.
This PR adds a cmake variable in the MSVC path,
LLDB_EXPORT_ALL_SYMBOLS_PLUGINS, that allows for providing the set
of plugins to export symbols from.
Add the ability to get a C++ vtable ValueObject from another
ValueObject.
This patch adds the ability to ask a ValueObject for a ValueObject that
represents the virtual function table for a C++ class. If the
ValueObject is not a C++ class with a vtable, a valid ValueObject value
will be returned that contains an appropriate error. If it is successful
a valid ValueObject that represents vtable will be returned. The
ValueObject that is returned will have a name that matches the demangled
value for a C++ vtable mangled name like "vtable for <class-name>". It
will have N children, one for each virtual function pointer. Each
child's value is the function pointer itself, the summary is the
symbolication of this function pointer, and the type will be a valid
function pointer from the debug info if there is debug information
corresponding to the virtual function pointer.
The vtable SBValue will have the following:
- SBValue::GetName() returns "vtable for <class>"
- SBValue::GetValue() returns a string representation of the vtable
address
- SBValue::GetSummary() returns NULL
- SBValue::GetType() returns a type appropriate for a uintptr_t type for
the current process
- SBValue::GetLoadAddress() returns the address of the vtable adderess
- SBValue::GetValueAsUnsigned(...) returns the vtable address
- SBValue::GetNumChildren() returns the number of virtual function
pointers in the vtable
- SBValue::GetChildAtIndex(...) returns a SBValue that represents a
virtual function pointer
The child SBValue objects that represent a virtual function pointer has
the following values:
- SBValue::GetName() returns "[%u]" where %u is the vtable function
pointer index
- SBValue::GetValue() returns a string representation of the virtual
function pointer
- SBValue::GetSummary() returns a symbolicated respresentation of the
virtual function pointer
- SBValue::GetType() returns the function prototype type if there is
debug info, or a generic funtion prototype if there is no debug info
- SBValue::GetLoadAddress() returns the address of the virtual function
pointer
- SBValue::GetValueAsUnsigned(...) returns the virtual function pointer
- SBValue::GetNumChildren() returns 0
- SBValue::GetChildAtIndex(...) returns invalid SBValue for any index
Examples of using this API via python:
```
(lldb) script vtable = lldb.frame.FindVariable("shape_ptr").GetVTable()
(lldb) script vtable
vtable for Shape = 0x0000000100004088 {
[0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
[1] = 0x0000000100003e4c a.out`Shape::~Shape() at main.cpp:3
[2] = 0x0000000100003e7c a.out`Shape::area() at main.cpp:4
[3] = 0x0000000100003e3c a.out`Shape::optional() at main.cpp:7
}
(lldb) script c = vtable.GetChildAtIndex(0)
(lldb) script c
(void ()) [0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
```
[lldb] Part 2 of 2 - Refactor `CommandObject::DoExecute(...)` to return
`void` instead of ~~`bool`~~
Justifications:
- The code doesn't ultimately apply the `true`/`false` return values.
- The methods already pass around a `CommandReturnObject`, typically
with a `result` parameter.
- Each command return object already contains:
- A more precise status
- The error code(s) that apply to that status
Part 1 refactors the `CommandObject::Execute(...)` method.
- See
[https://github.com/llvm/llvm-project/pull/69989](https://github.com/llvm/llvm-project/pull/69989)
rdar://117378957
This patch adds a `SBType::FindDirectNestedType(name)` function which performs a non-recursive search in given class for a type with specified name. The intent is to perform a fast search in debug info, so that it can be used in formatters, and let them remain responsive.
This is driven by my work on formatters for Clang and LLVM types. In particular, by [`PointerIntPairInfo::MaskAndShiftConstants`](cde9f9df79/llvm/include/llvm/ADT/PointerIntPair.h (L174C16-L174C16)), which is required to extract pointer and integer from `PointerIntPair`.
Related Discourse thread: https://discourse.llvm.org/t/traversing-member-types-of-a-type/72452
LLDB has the cmake flag `LLDB_EXPORT_ALL_SYMBOLS` that exports the lldb,
lldb_private namespaces, as well as other symbols like python and lua
(see `lldb/source/API/liblldb-private.exports`). However, not all
symbols in lldb fall into these categories and in order to get access to
some symbols that live in plugin folders (like dwarf parsing symbols),
it's useful to be able to specify a custom exports file giving more
control to the developer using lldb as a library.
This adds the new cmake flag `LLDB_EXPORT_ALL_SYMBOLS_EXPORTS_FILE` that
is used when `LLDB_EXPORT_ALL_SYMBOLS` is enabled to specify that custom
exports file.
This is a follow up of https://github.com/llvm/llvm-project/pull/67851
LLDB_EXPORT_ALL_SYMBOLS is useful when building out-of-tree plugins and
extensions that rely on LLDB's internal symbols. For example, this is
how the Mojo language provides its REPL and debugger support.
Supporting this on windows is kind of tricky because this is normally
expected to be done using dllexport/dllimport, but lldb uses these with
the public api. This PR takes an approach similar to what LLVM does with
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS, and what chromium does for
[abseil](253d14e20f/third_party/abseil-cpp/generate_def_files.py),
and uses a python script to extract the necessary symbols by looking at
the symbol table for the various lldb libraries.
This reverts commit a7b78cac9a77e3ef6bbbd8ab1a559891dc693401.
With updates to the tests.
TestWatchTaggedAddress.py: Updated the expected watchpoint types,
though I'm not sure there should be a differnt default for the two
ways of setting them, that needs to be confirmed.
TestStepOverWatchpoint.py: Skipped this everywhere because I think
what used to happen is you couldn't put 2 watchpoints on the same
address (after alignment). I guess that this is now allowed because
modify watchpoints aren't accounted for, but likely should be.
Needs investigating.
This reverts commit 933ad5c897ee366759a54869b35b2d7285a92137.
This caused 1 test failure and an unexpected pass on AArch64 Linux:
https://lab.llvm.org/buildbot/#/builders/96/builds/45765
Wasn't reported because the bot was already red at the time.
Watchpoints in lldb can be either 'read', 'write', or 'read/write'. This
is exposing the actual behavior of hardware watchpoints. gdb has a
different behavior: a "write" type watchpoint only stops when the
watched memory region *changes*.
A user is using a watchpoint for one of three reasons:
1. Want to find what is changing/corrupting this memory.
2. Want to find what is writing to this memory.
3. Want to find what is reading from this memory.
I believe (1) is the most common use case for watchpoints, and it
currently can't be done in lldb -- the user needs to continue every time
the same value is written to the watched-memory manually. I think gdb's
behavior is the correct one. There are some use cases where a developer
wants to find every function that writes/reads to/from a memory region,
regardless of value, I want to still allow that functionality.
This is also a bit of groundwork for my large watchpoint support
proposal
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
where I will be adding support for AArch64 MASK watchpoints which watch
power-of-2 memory regions. A user might ask to watch 24 bytes, and a
MASK watchpoint stub can do this with a 32-byte MASK watchpoint if it is
properly aligned. And we need to ignore writes to the final 8 bytes of
that watched region, and not show those hits to the user.
This patch adds a new 'modify' watchpoint type and it is the default.
Re-landing this patch after addressing testsuite failures found in CI on
Linux, Intel machines, and windows.
rdar://108234227
Watchpoints in lldb can be either 'read', 'write', or 'read/write'. This
is exposing the actual behavior of hardware watchpoints. gdb has a
different behavior: a "write" type watchpoint only stops when the
watched memory region *changes*.
A user is using a watchpoint for one of three reasons:
1. Want to find what is changing/corrupting this memory.
2. Want to find what is writing to this memory.
3. Want to find what is reading from this memory.
I believe (1) is the most common use case for watchpoints, and it
currently can't be done in lldb -- the user needs to continue every time
the same value is written to the watched-memory manually. I think gdb's
behavior is the correct one. There are some use cases where a developer
wants to find every function that writes/reads to/from a memory region,
regardless of value, I want to still allow that functionality.
This is also a bit of groundwork for my large watchpoint support
proposal
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
where I will be adding support for AArch64 MASK watchpoints which watch
power-of-2 memory regions. A user might ask to watch 24 bytes, and a
MASK watchpoint stub can do this with a 32-byte MASK watchpoint if it is
properly aligned. And we need to ignore writes to the final 8 bytes of
that watched region, and not show those hits to the user.
This patch adds a new 'modify' watchpoint type and it is the default.
rdar://108234227
Add a configuration entry for whether LLDB was configured with wide
character support in Editline and use it in a decorator to guard the
UTF-8 prompt test.
The default constructor for SBCommandInterpreter was (unintentionally)
made protected in 27b6a4e63afe. The goal of the patch was to make the
constructor taking an lldb_private type protected, but due to the
presence of a default argument, this ctor also served as the default
constructor. The latter should remain public.
This commit reinstates the original behavior by removing the default
argument and having an explicit, public default constructor.
These functions have been NO-OPs since 2014 (44d937820b451). Remove them
and deprecate the corresponding functions in SBDebugger.
Differential revision: https://reviews.llvm.org/D158000
As stated on Discourse*, these methods have been deprecated. I am
removing their implementation. They will now do nothing and return a
value indicating failure (where appropriate).
Due to the LLDB project's commitment to ABI stability at the SB API
layer, we cannot remove these symbols completely.
Discourse link: https://discourse.llvm.org/t/do-you-use-the-threading-functionality-in-sbhostos/71973
Make SBTarget::AddModule possibly call out to an external program to
find the binary by UUID if it can't be found more easily, the same
way `target modules add -u ...` works from the commandline.
If the Target does not have an architecture set yet, use the
Module's Arch to initialize it. Allows an API writer to create
a target with no arch, and inherit it from the first binary they
load with AddModules.
Differential Revision: https://reviews.llvm.org/D157659
rdar://113657555
StreamFile subclasses Stream (from lldbUtility) and is backed by a File
(from lldbHost). It does not depend on anything from lldbCore or any of its
sibling libraries, so I think it makes sense for this to live in
lldbHost instead.
Differential Revision: https://reviews.llvm.org/D157460
In a809720102fae8d1b5a7073f99f9dae9395c5f41 I refactored some logic to
deal with the clang resource directory in standalone LLDB builds.
However, this logic escaped me because it only runs when you do not
build LLDB.framework.
Differential Revision: https://reviews.llvm.org/D156763
This patch adds the ability to pass native types from the script
interpreter to methods that use a {SB,}StructuredData argument.
To do so, this patch changes the `ScriptedObject` struture that holds
the pointer to the script object as well as the originating script
interpreter language. It also exposes that to the SB API via a new class
called `SBScriptObject`.
This structure allows the debugger to parse the script object and
convert it to a StructuredData object. If the type is not compatible
with the StructuredData types, we will store its pointer in a
`StructuredData::Generic` object.
This patch also adds some SWIG typemaps that checks the input argument to
ensure it's either an SBStructuredData object, in which case it just
passes it throught, or a python object that is NOT another SB type, to
provide some guardrails for the user.
rdar://111467140
Differential Revision: https://reviews.llvm.org/D155161
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
`Instruction::TestEmulation` takes a `Stream *` and checks it for validity.
However, this is unnecessary as we can always ensure that we never pass
`nullptr` for the `Stream` argument. The only use of
`Instruction::TestEmulation` currently is `SBInstruction::TestEmulation`
which gets the `Stream` from an `SBStream`, and `SBStream::ref` can
return a `Stream &` guaranteed.
Differential Revision: https://reviews.llvm.org/D154757
Also, make it possible for new Targets which haven't been added to
the TargetList yet to check for interruption, and add a few more
places in building modules where we can check for interruption.
Differential Revision: https://reviews.llvm.org/D154542
Fix incorrect uses of formatv specifiers in LLDB_LOG. Unlike Python,
arguments must be numbered. All the affected log statements take
llvm:Errors so use the LLDB_LOG_ERROR macro instead.
Differential revision: https://reviews.llvm.org/D154532
None of these need to be in the ConstString StringPool. For the most
part they are constant strings and do not require fast comparisons.
I did change IOHandlerDelegateMultiline slightly -- specifically, the
`m_end_line` member always has a `\n` at the end of it now. This was so
that `IOHandlerGetControlSequence` can always return a StringRef. This
did require a slight change to `IOHandlerIsInputComplete` where we must
drop the newline before comparing it against the input parameter.
Differential Revision: https://reviews.llvm.org/D151597