The function was using the default version of ValueObject::Dump, which
has a default of using the synthetic-ness of the top-level value for
determining whether to print _all_ values as synthetic. This resulted in
some unusual behavior, where e.g. a std::vector is stringified as
synthetic if its dumped as the top level object, but in its raw form if
it is a member of a struct without a pretty printer.
The SBValue class already has properties which determine whether one
should be looking at the synthetic view of the object (and also whether
to use dynamic types), so it seems more natural to use that.
Add the ability to get a C++ vtable ValueObject from another
ValueObject.
This patch adds the ability to ask a ValueObject for a ValueObject that
represents the virtual function table for a C++ class. If the
ValueObject is not a C++ class with a vtable, a valid ValueObject value
will be returned that contains an appropriate error. If it is successful
a valid ValueObject that represents vtable will be returned. The
ValueObject that is returned will have a name that matches the demangled
value for a C++ vtable mangled name like "vtable for <class-name>". It
will have N children, one for each virtual function pointer. Each
child's value is the function pointer itself, the summary is the
symbolication of this function pointer, and the type will be a valid
function pointer from the debug info if there is debug information
corresponding to the virtual function pointer.
The vtable SBValue will have the following:
- SBValue::GetName() returns "vtable for <class>"
- SBValue::GetValue() returns a string representation of the vtable
address
- SBValue::GetSummary() returns NULL
- SBValue::GetType() returns a type appropriate for a uintptr_t type for
the current process
- SBValue::GetLoadAddress() returns the address of the vtable adderess
- SBValue::GetValueAsUnsigned(...) returns the vtable address
- SBValue::GetNumChildren() returns the number of virtual function
pointers in the vtable
- SBValue::GetChildAtIndex(...) returns a SBValue that represents a
virtual function pointer
The child SBValue objects that represent a virtual function pointer has
the following values:
- SBValue::GetName() returns "[%u]" where %u is the vtable function
pointer index
- SBValue::GetValue() returns a string representation of the virtual
function pointer
- SBValue::GetSummary() returns a symbolicated respresentation of the
virtual function pointer
- SBValue::GetType() returns the function prototype type if there is
debug info, or a generic funtion prototype if there is no debug info
- SBValue::GetLoadAddress() returns the address of the virtual function
pointer
- SBValue::GetValueAsUnsigned(...) returns the virtual function pointer
- SBValue::GetNumChildren() returns 0
- SBValue::GetChildAtIndex(...) returns invalid SBValue for any index
Examples of using this API via python:
```
(lldb) script vtable = lldb.frame.FindVariable("shape_ptr").GetVTable()
(lldb) script vtable
vtable for Shape = 0x0000000100004088 {
[0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
[1] = 0x0000000100003e4c a.out`Shape::~Shape() at main.cpp:3
[2] = 0x0000000100003e7c a.out`Shape::area() at main.cpp:4
[3] = 0x0000000100003e3c a.out`Shape::optional() at main.cpp:7
}
(lldb) script c = vtable.GetChildAtIndex(0)
(lldb) script c
(void ()) [0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
```
This reverts commit a7b78cac9a77e3ef6bbbd8ab1a559891dc693401.
With updates to the tests.
TestWatchTaggedAddress.py: Updated the expected watchpoint types,
though I'm not sure there should be a differnt default for the two
ways of setting them, that needs to be confirmed.
TestStepOverWatchpoint.py: Skipped this everywhere because I think
what used to happen is you couldn't put 2 watchpoints on the same
address (after alignment). I guess that this is now allowed because
modify watchpoints aren't accounted for, but likely should be.
Needs investigating.
This reverts commit 933ad5c897ee366759a54869b35b2d7285a92137.
This caused 1 test failure and an unexpected pass on AArch64 Linux:
https://lab.llvm.org/buildbot/#/builders/96/builds/45765
Wasn't reported because the bot was already red at the time.
Watchpoints in lldb can be either 'read', 'write', or 'read/write'. This
is exposing the actual behavior of hardware watchpoints. gdb has a
different behavior: a "write" type watchpoint only stops when the
watched memory region *changes*.
A user is using a watchpoint for one of three reasons:
1. Want to find what is changing/corrupting this memory.
2. Want to find what is writing to this memory.
3. Want to find what is reading from this memory.
I believe (1) is the most common use case for watchpoints, and it
currently can't be done in lldb -- the user needs to continue every time
the same value is written to the watched-memory manually. I think gdb's
behavior is the correct one. There are some use cases where a developer
wants to find every function that writes/reads to/from a memory region,
regardless of value, I want to still allow that functionality.
This is also a bit of groundwork for my large watchpoint support
proposal
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
where I will be adding support for AArch64 MASK watchpoints which watch
power-of-2 memory regions. A user might ask to watch 24 bytes, and a
MASK watchpoint stub can do this with a 32-byte MASK watchpoint if it is
properly aligned. And we need to ignore writes to the final 8 bytes of
that watched region, and not show those hits to the user.
This patch adds a new 'modify' watchpoint type and it is the default.
Re-landing this patch after addressing testsuite failures found in CI on
Linux, Intel machines, and windows.
rdar://108234227
Watchpoints in lldb can be either 'read', 'write', or 'read/write'. This
is exposing the actual behavior of hardware watchpoints. gdb has a
different behavior: a "write" type watchpoint only stops when the
watched memory region *changes*.
A user is using a watchpoint for one of three reasons:
1. Want to find what is changing/corrupting this memory.
2. Want to find what is writing to this memory.
3. Want to find what is reading from this memory.
I believe (1) is the most common use case for watchpoints, and it
currently can't be done in lldb -- the user needs to continue every time
the same value is written to the watched-memory manually. I think gdb's
behavior is the correct one. There are some use cases where a developer
wants to find every function that writes/reads to/from a memory region,
regardless of value, I want to still allow that functionality.
This is also a bit of groundwork for my large watchpoint support
proposal
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
where I will be adding support for AArch64 MASK watchpoints which watch
power-of-2 memory regions. A user might ask to watch 24 bytes, and a
MASK watchpoint stub can do this with a 32-byte MASK watchpoint if it is
properly aligned. And we need to ignore writes to the final 8 bytes of
that watched region, and not show those hits to the user.
This patch adds a new 'modify' watchpoint type and it is the default.
rdar://108234227
StreamFile subclasses Stream (from lldbUtility) and is backed by a File
(from lldbHost). It does not depend on anything from lldbCore or any of its
sibling libraries, so I think it makes sense for this to live in
lldbHost instead.
Differential Revision: https://reviews.llvm.org/D157460
Existing callers of `GetChildAtIndex` pass true for can_create. This change
makes true the default value, callers don't have to pass an opaque true.
See also D151966 for the same change to `GetChildMemberWithName`.
Differential Revision: https://reviews.llvm.org/D152031
It turns out all existing callers of `GetChildMemberWithName` pass true for `can_create`.
This change makes `true` the default value, callers don't have to pass an opaque true.
Differential Revision: https://reviews.llvm.org/D151966
As with D151615, which changed `GetIndexOfChildMemberWithName` to take a `StringRef`
instead of a `ConstString`, this change does the same for `GetIndexOfChildWithName`.
Differential Revision: https://reviews.llvm.org/D151811
`GetChildMemberWithName` does not need a `ConstString`. This change makes the function
take a `StringRef` instead, which alleviates the need for callers to construct a
`ConstString`. I don't expect this change to improve performance, only ergonomics.
This is in support of Alex's effort to replace `ConstString` where appropriate.
There are related `ValueObject` functions that can also be changed, if this is accepted.
Differential Revision: https://reviews.llvm.org/D151615
LLDB should guarantee that the strings returned by SBAPI methods
live forever. I went through every method that returns a string and made
sure that it was added to the ConstString StringPool before returning if
it wasn't obvious that it was already doing so.
I've also updated the docs to document this behavior.
Differential Revision: https://reviews.llvm.org/D150804
Revert while I investigate two CI bot failures;
the more important is the lldb-arm-ubuntu where
the FixAddress is removing the 0th bit so we're
adding the `actual=` decorator on a string pointer,
```
Got output:
(char *) strptr = 0x00400817 (actual=0x400816) ptr = [{ },{H}]
```
in TestDataFormatterSmartArray.py line 229.
This reverts commit 4d635be2dbadc77522eddc9668697385a3b9f8b4.
On target where metadata is stored in bits that aren't used for
virtual addressing -- AArch64 Top Byte Ignore and pointer authentication
are two examples -- an SBValue object representing a pointer will
return the address with metadata for SBValue::GetValueAsUnsigned.
Users may want to get the virtual address without the metadata;
this new method gives them a way to do this.
Differential Revision: https://reviews.llvm.org/D142792
hold an error should:
(a) return false for IsValid, since that's the current behavior and is
a convenient way to check "should I get the value for this".
(b) preserve the error when an SBValue is made from it, and print the
error in the ValueObjectPrinter.
Make that happen.
Differential Revision: https://reviews.llvm.org/D144664
Applied modernize-use-equals-default clang-tidy check over LLDB.
This check is already present in the lldb/.clang-tidy config.
Differential Revision: https://reviews.llvm.org/D121844
Remove the last remaining references to the reproducers from the
instrumentation. This patch renames the relevant files and macros.
Differential revision: https://reviews.llvm.org/D117712
This patch moves the Declaration class from the Symbol library to the
Core library. This will allow to use it in a more generic fashion and
aims to lower the dependency cycles when it comes to the linking.
The patch also does some cleaning up by making column information
permanent and removing the LLDB_ENABLE_DECLARATION_COLUMNS directives.
Differential revision: https://reviews.llvm.org/D101556
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Every call to the protected SBAddress constructor and the SetAddress
method takes the address of a valid object which means we might as well
pass it as a const reference instead of a pointer and drop the null
check.
Differential revision: https://reviews.llvm.org/D88249
This cleanup patch unifies all methods called GetByteSize() in the
ValueObject hierarchy to return an optional, like the methods in
CompilerType do. This means fewer magic 0 values, which could fix bugs
down the road in languages where types can have a size of zero, such
as Swift and C (but not C++).
Differential Revision: https://reviews.llvm.org/D84285
This re-lands the patch with bogus :m_byte_size(0) initalizations removed.
This cleanup patch unifies all methods called GetByteSize() in the
ValueObject hierarchy to return an optional, like the methods in
CompilerType do. This means fewer magic 0 values, which could fix bugs
down the road in languages where types can have a size of zero, such
as Swift and C (but not C++).
Differential Revision: https://reviews.llvm.org/D84285
Summary:
`CalculateSyntheticValue` and `GetSyntheticValue` have a `use_synthetic` parameter
that makes the function do nothing when it's false. We obviously always pass true
to the function (or check that the value we pass is true), because there really isn't
any point calling with function with a `false`. This just removes all of this.
Reviewers: labath, JDevlieghere, davide
Reviewed By: davide
Subscribers: davide
Differential Revision: https://reviews.llvm.org/D79568
I previously removed the code in ValueObject::GetExpressionPath that
took advantage of the parameter `qualify_cxx_base_classes`. As a result,
this is now unused and can be removed.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
This is a half-implemented feature that as far as we can tell was
never used by anything since its original inclusion in 2014. This
patch removes it to make remaining the code easier to understand.
Differential Revision: https://reviews.llvm.org/D71310
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
For some reason I had convinced myself that functions returning by
pointer or reference do not require recording their result. However,
after further considering I don't see how that could work, at least not
with the current implementation. Interestingly enough, the reproducer
instrumentation already (mostly) accounts for this, though the
lldb-instr tool did not.
This patch adds the missing macros and updates the lldb-instr tool.
Differential revision: https://reviews.llvm.org/D60178
llvm-svn: 357639
Move SBRegistry method registrations from SBReproducer.cpp into files
declaring the individual APIs, in order to reduce the memory consumption
during build and improve maintainability. The current humongous
SBRegistry constructor exhausts all memory on a NetBSD system with 4G
RAM + 4G swap, therefore making it impossible to build LLDB.
Differential Revision: https://reviews.llvm.org/D59427
llvm-svn: 356481
Summary:
Our python version of the SB API has (the python equivalent of)
operator bool, but the C++ version doesn't.
This is because our python operators are added by modify-python-lldb.py,
which performs postprocessing on the swig-generated interface files.
In this patch, I add the "operator bool" to all SB classes which have an
IsValid method (which is the same logic used by modify-python-lldb.py).
This way, we make the two interfaces more constent, and it allows us to
rely on swig's automatic syntesis of python __nonzero__ methods instead
of doing manual fixups.
Reviewers: zturner, jingham, clayborg, jfb, serge-sans-paille
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D58792
llvm-svn: 355824
The current record macros already log the function being called. This
patch extends the macros to also log their input arguments and removes
explicit logging from the SB API.
This might degrade the amount of information in some cases (because of
smarter casts or efforts to log return values). However I think this is
outweighed by the increased coverage and consistency. Furthermore, using
the reproducer infrastructure, diagnosing bugs in the API layer should
become much easier compared to relying on log messages.
Differential revision: https://reviews.llvm.org/D59101
llvm-svn: 355649
This patch adds the SBReproducer macros needed to capture and reply the
corresponding calls. This patch was generated by running the lldb-instr
tool on the API source files.
Differential revision: https://reviews.llvm.org/D57475
llvm-svn: 355459
Unlike std::make_unique, which is only available since C++14,
std::make_shared is available since C++11. Not only is std::make_shared
a lot more readable compared to ::reset(new), it also performs a single
heap allocation for the object and control block.
Differential revision: https://reviews.llvm.org/D57990
llvm-svn: 353764
Summary:
This patch adds support of expression evaluation in a context of some object.
Consider the following example:
```
struct S {
int a = 11;
int b = 12;
};
int main() {
S s;
int a = 1;
int b = 2;
// We have stopped here
return 0;
}
```
This patch allows to do something like that:
```
lldb.frame.FindVariable("s").EvaluateExpression("a + b")
```
and the result will be `33` (not `3`) because fields `a` and `b` of `s` will be
used (not locals `a` and `b`).
This is achieved by replacing of `this` type and object for the expression. This
has some limitations: an expression can be evaluated only for values located in
the debuggee process memory (they must have an address of `eAddressTypeLoad`
type).
Reviewers: teemperor, clayborg, jingham, zturner, labath, davide, spyffe, serge-sans-paille
Reviewed By: jingham
Subscribers: abidh, lldb-commits, leonid.mashinskiy
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D55318
llvm-svn: 353149
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872