This optimization tries to convert switch instructions that are used to select a value with only 2 unique cases + default block
to a select or a couple of selects (depending if the default block is reachable or not).
The typical case this optimization wants to be able to optimize is this one:
Example:
switch (a) {
case 10: %0 = icmp eq i32 %a, 10
return 10; %1 = select i1 %0, i32 10, i32 4
case 20: ----> %2 = icmp eq i32 %a, 20
return 2; %3 = select i1 %2, i32 2, i32 %1
default:
return 4;
}
It also sets the base for further optimizations that are planned and being reviewed.
llvm-svn: 219223
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
llvm-svn: 219210
Takes care of the assert that caused build fails.
Rather than asserting the code checks now that the definition
and use are in the same block, and does not attempt
to optimize when that is not the case.
llvm-svn: 219175
Particularly, it addresses cases where Reassociate breaks Subtracts but then fails to optimize combinations like I1 + -I2 where I1 and I2 have the same rank and are identical.
Patch by Dmitri Shtilman.
llvm-svn: 219092
Joerg suggested on IRC that I look at generalizing the logic from r219067 to
handle more general redundancies (like removing an assume(x > 3) dominated by
an assume(x > 5)). The way to do this would be to ask ValueTracking to
determine the value of the i1 argument. It turns out that ValueTracking is not
very good at this right now (although it does get the trivial redundancy case)
because it does not understand ICmps. Nevertheless, the resulting code in
InstCombine is simpler than r219067, so we might as well do it now.
llvm-svn: 219070
For any @llvm.assume intrinsic, if there is another which dominates it and uses
the same condition, then it is redundant and can be removed. While this does
not alter the semantics of the @llvm.assume intrinsics, it makes subsequent
handling more efficient (and the resulting IR easier to read).
llvm-svn: 219067
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
When unsafe-fp-math is enabled, we can turn sqrt(X) * sqrt(X) into X.
This can happen in the real world when calculating x ** 3/2. This occurs
in test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c.
Differential Revision: http://reviews.llvm.org/D5584
llvm-svn: 218906
My commit rL216160 introduced a bug PR21014: IndVars widens code 'for (i = ; i < ...; i++) arr[ CONST - i]' into 'for (i = ; i < ...; i++) arr[ i - CONST]'
thus inverting index expression. This patch fixes it.
Thanks to Jörg Sonnenberger for pointing.
Differential Revision: http://reviews.llvm.org/D5576
llvm-svn: 218867
`DIExpression`'s elements are 64-bit integers that are stored as
`ConstantInt`. The accessors already encapsulate the storage. This
commit updates the `DIBuilder` API to also encapsulate that.
llvm-svn: 218797
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
The icmp-select-icmp optimization made the implicit assumption
that the select-icmp instructions are in the same block and asserted on it.
The fix explicitly checks for that condition and conservatively suppresses
the optimization when it is violated.
llvm-svn: 218735
In special cases select instructions can be eliminated by
replacing them with a cheaper bitwise operation even when the
select result is used outside its home block. The instances implemented
are patterns like
%x=icmp.eq
%y=select %x,%r, null
%z=icmp.eq|neq %y, null
br %z,true, false
==> %x=icmp.ne
%y=icmp.eq %r,null
%z=or %x,%y
br %z,true,false
The optimization is integrated into the instruction
combiner and performed only when all uses of the select result can
be replaced by the select operand proper. For this dominator information
is used and dominance is now a required analysis pass in the combiner.
The optimization itself is iterative. The critical step is to replace the
select result with the non-constant select operand. So the select becomes
local and the combiner iteratively works out simpler code pattern and
eventually eliminates the select.
rdar://17853760
llvm-svn: 218721
Summary:
This patch adds a threshold that controls the number of bonus instructions
allowed for folding branches with common destination. The original code allows
at most one bonus instruction. With this patch, users can customize the
threshold to allow multiple bonus instructions. The default threshold is still
1, so that the code behaves the same as before when users do not specify this
threshold.
The motivation of this change is that tuning this threshold significantly (up
to 25%) improves the performance of some CUDA programs in our internal code
base. In general, branch instructions are very expensive for GPU programs.
Therefore, it is sometimes worth trading more arithmetic computation for a more
straightened control flow. Here's a reduced example:
__global__ void foo(int a, int b, int c, int d, int e, int n,
const int *input, int *output) {
int sum = 0;
for (int i = 0; i < n; ++i)
sum += (((i ^ a) > b) && (((i | c ) ^ d) > e)) ? 0 : input[i];
*output = sum;
}
The select statement in the loop body translates to two branch instructions "if
((i ^ a) > b)" and "if (((i | c) ^ d) > e)" which share a common destination.
With the default threshold, SimplifyCFG is unable to fold them, because
computing the condition of the second branch "(i | c) ^ d > e" requires two
bonus instructions. With the threshold increased, SimplifyCFG can fold the two
branches so that the loop body contains only one branch, making the code
conceptually look like:
sum += (((i ^ a) > b) & (((i | c ) ^ d) > e)) ? 0 : input[i];
Increasing the threshold significantly improves the performance of this
particular example. In the configuration where both conditions are guaranteed
to be true, increasing the threshold from 1 to 2 improves the performance by
18.24%. Even in the configuration where the first condition is false and the
second condition is true, which favors shortcuts, increasing the threshold from
1 to 2 still improves the performance by 4.35%.
We are still looking for a good threshold and maybe a better cost model than
just counting the number of bonus instructions. However, according to the above
numbers, we think it is at least worth adding a threshold to enable more
experiments and tuning. Let me know what you think. Thanks!
Test Plan: Added one test case to check the threshold is in effect
Reviewers: nadav, eliben, meheff, resistor, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D5529
llvm-svn: 218711
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
if (extraiters == loopfactor) jump L1
if (extraiters == loopfactor-1) jump L2
...
L1: LoopBody;
L2: LoopBody;
...
if tripcount < loopfactor jump End
Loop:
...
End:
It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like
extraiters = tripcount % loopfactor
if (extraiters == 0) jump Loop:
else jump Prol
Prol: LoopBody;
extraiters -= 1 // Omitted if unroll factor is 2.
if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
if (tripcount < loopfactor) jump End
Loop:
...
End:
Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.
llvm-svn: 218604
The doFinalization method checks that the LoopToAliasSetMap is
empty. LICM populates that map as it runs through the loop nest,
deleting the entries for child loops as it goes. However, if a child
loop is deleted by another pass (e.g. unrolling) then the loop will
never be deleted from the map because LICM walks the loop nest to
find entries it can delete.
The fix is to delete the loop from the map and free the alias set
when the loop is deleted from the loop nest.
Differential Revision: http://reviews.llvm.org/D5305
llvm-svn: 218387
Rather than slurping in and splatting out the whole ctor list, preserve
the existing array entries without trying to understand them. Only
remove the entries that we know we can optimize away. This way we don't
need to wire through priority and comdats or anything else we might add.
Fixes a linker issue where the .init_array or .ctors entry would point
to discarded initialization code if the comdat group from the TU with
the faulty global_ctors entry was dropped.
llvm-svn: 218337
shim between the TargetTransformInfo immutable pass and the Subtarget
via the TargetMachine and Function. Migrate a single call from
BasicTargetTransformInfo as an example and provide shims where TargetMachine
begins taking a Function to determine the subtarget.
No functional change.
llvm-svn: 218004
This type isn't owned polymorphically (as demonstrated by making the
dtor protected and everything still compiling) so just address the
warning by protecting the base dtor and making the derived class final.
llvm-svn: 217990
This improves other optimizations such as LSR. A sext may be added to the
compare's other operand, but this can often be hoisted outside of the loop.
llvm-svn: 217953
Example:
define i1 @foo(i32 %a) {
%shr = ashr i32 -9, %a
%cmp = icmp ne i32 %shr, -5
ret i1 %cmp
}
Before this fix, the instruction combiner wrongly thought that %shr
could have never been equal to -5. Therefore, %cmp was always folded to 'true'.
However, when %a is equal to 1, then %cmp evaluates to 'false'. Therefore,
in this example, it is not valid to fold %cmp to 'true'.
The problem was only affecting the case where the comparison was between
negative quantities where one of the quantities was obtained from arithmetic
shift of a negative constant.
This patch fixes the problem with the wrong folding (fixes PR20945).
With this patch, the 'icmp' from the example is now simplified to a
comparison between %a and 1. This still allows us to get rid of the arithmetic
shift (%shr).
llvm-svn: 217950
Summary: UsedByBranch is always true according to how BonusInst is defined.
Test Plan:
Passes check-all, and also verified
if (BonusInst && !UsedByBranch) {
...
}
is never entered during check-all.
Reviewers: resistor, nadav, jingyue
Reviewed By: jingyue
Subscribers: llvm-commits, eliben, meheff
Differential Revision: http://reviews.llvm.org/D5324
llvm-svn: 217824