I have refactored the code so that we no longer need the
ScalableVecArgument descriptor - the scalable property of vectors is
now encoded using the ElementCount class in IITDescriptor. This means
that when matching intrinsics we know precisely how to match the
arguments and return values.
Differential Revision: https://reviews.llvm.org/D80107
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
Summary:
The BFloat IR type is introduced to provide support for, initially, the BFloat16
datatype introduced with the Armv8.6 architecture (optional from Armv8.2
onwards). It has an 8-bit exponent and a 7-bit mantissa and behaves like an IEEE
754 floating point IR type.
This is part of a patch series upstreaming Armv8.6 features. Subsequent patches
will upstream intrinsics support and C-lang support for BFloat.
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, sdesmalen, deadalnix, ctetreau
Subscribers: hiraditya, llvm-commits, danielkiss, arphaman, kristof.beyls, dexonsmith
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78190
I have changed the ScalableVecArgument case in matchIntrinsicType
to create a new FixedVectorType. This means that the next case we
hit (Vector) will not assert when calling getNumElements(), since
we know that it's always a FixedVectorType. This is a temporary
measure for now, and it will be fixed properly in another patch
that refactors this code.
The changes are covered by this existing test:
CodeGen/AArch64/sve-intrinsics-fp-converts.ll
In addition, I have added a new test to ensure that we correctly
reject SVE intrinsics when called with fixed length vector types.
Differential Revision: https://reviews.llvm.org/D79416
Summary:
Piggy-back off of TypeSize's STRICT_FIXED_SIZE_VECTORS flag and:
- if it is defined, assert that the vector is not scalable
- if it is not defined, complain if the vector is scalable
Reviewers: efriedma, sdesmalen, c-rhodes
Reviewed By: sdesmalen
Subscribers: hiraditya, mgorny, tschuett, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78576
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77276
When constrained floating point is enabled the AArch64-specific builtins don't use constrained intrinsics in some cases. Fix that.
Neon is part of this patch, so ARM is affected as well.
Differential Revision: https://reviews.llvm.org/D77074
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
Summary:
When adjusting function entry counts after inlining, Funciton::setEntryCount is called without providing an import function list. The side effect of that is the previously set import function list will be dropped. The import function list is used by ThinLTO to help import hot cross module callee for LTO inlining, so dropping that during ThinLTO pre-link may adversely affect LTO inlining. The fix is to keep the list while updating entry counts for inlining.
Reviewers: wmi, davidxl, tejohnson
Subscribers: mehdi_amini, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69736
Summary:
This allows intrinsics such as the following to be defined:
- declare <n x 4 x i32> @llvm.something.nxv4f32(<n x 4 x i32>, <n x 4 x i1>, <n x 4 x float>)
...where <n x 4 x i32> is derived from <n x 4 x float>, but
the element needs bitcasting to int.
Reviewers: c-rhodes, sdesmalen, rovka
Reviewed By: c-rhodes
Subscribers: tschuett, hiraditya, jdoerfert, llvm-commits, cfe-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68021
llvm-svn: 373437
Summary:
Both match the type of another intrinsic parameter of a vector type, but where each element is subdivided to form a vector with more elements of a smaller type.
Subdivide2Argument allows intrinsics such as the following to be defined:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 8 x i16>)
Subdivide4Argument allows intrinsics such as:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 16 x i8>)
Tests are included in follow up patches which add intrinsics using these types.
Reviewers: sdesmalen, SjoerdMeijer, greened, rovka
Reviewed By: sdesmalen
Subscribers: rovka, tschuett, jdoerfert, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67549
llvm-svn: 372380
Summary:
This patch adds support for scalable vectors in intrinsics, enabling
intrinsics such as the following to be defined:
declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 4 x i32>)
Support for this is implemented by defining a new type descriptor for
scalable vectors and adding mangling support for scalable vector types
in the name mangling scheme used by 'any' types in intrinsic signatures.
Tests have been added for IRBuilder to test scalable vectors work as
expected when using intrinsics through this interface. This required
implementing an intrinsic that is explicitly defined with scalable
vectors, e.g. LLVMType<nxv4i32>, an SVE floating-point convert
intrinsic was used for this. The behaviour of the overloaded type
LLVMScalarOrSameVectorWidth with scalable vectors is tested using the
existing masked load intrinsic. Also added an .ll test to test the
Verifier catches a bad intrinsic argument when passing a fixed-width
predicate (mask) to the masked.load intrinsic where a scalable is
expected.
Patch by Paul Walker
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D65930
llvm-svn: 370053
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.
For example:
; The LLVM LangRef specifies that the scalar result must equal the
; vector element type, but this is not checked/enforced by LLVM.
declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
This patch changes that into:
declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)
Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.
Reviewers: RKSimon, arsenm, rnk, greened, aemerson
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62996
llvm-svn: 363240
Extend the mechanism to overload intrinsic arguments by using either
backward or forward references to the overloadable arguments.
In for example:
def int_something : Intrinsic<[LLVMPointerToElt<0>],
[llvm_anyvector_ty], []>;
LLVMPointerToElt<0> is a forward reference to the overloadable operand
of type 'llvm_anyvector_ty' and would allow intrinsics such as:
declare i32* @llvm.something.v4i32(<4 x i32>);
declare i64* @llvm.something.v2i64(<2 x i64>);
where the result pointer type is deduced from the element type of the
first argument.
If the returned pointer is not a pointer to the element type, LLVM will
give an error:
Intrinsic has incorrect return type!
i64* (<4 x i32>)* @llvm.something.v4i32
Reviewers: RKSimon, arsenm, rnk, greened
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62995
llvm-svn: 363233
Most parts of LLVM don't care whether the byval type is derived from an
explicit Attribute or from the parameter's pointee type, so it makes
sense for the main access function to just return the right value.
The very few users who do care (only BitcodeReader so far) can find out
how it's specified by accessing the Attribute directly.
llvm-svn: 362642
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362012
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7a61d50db4566b02719de05492dcef1 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
This patch replaces the existing LLVMVectorSameWidth matcher with LLVMScalarOrSameVectorWidth.
The matching args must be either scalars or vectors with the same number of elements, but in either case the scalar/element type can differ, specified by LLVMScalarOrSameVectorWidth.
I've updated the _overflow intrinsics to demonstrate this - allowing it to return a i1 or <N x i1> overflow result, matching the scalar/vectorwidth of the other (add/sub/mul) result type.
The masked load/store/gather/scatter intrinsics have also been updated to use this, although as we specify the reference type to be llvm_anyvector_ty we guarantee the mask will be <N x i1> so no change in behaviour
Differential Revision: https://reviews.llvm.org/D57090
llvm-svn: 351957
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
`CallSite`.
With this change, the remaining `CallSite` usages are just for
implementing the wrapper type itself.
This does update the C API but leaves the names of that API alone and
only updates their implementation.
Differential Revision: https://reviews.llvm.org/D56184
llvm-svn: 350509
Most users won't have to worry about this as all of the
'getOrInsertFunction' functions on Module will default to the program
address space.
An overload has been added to Function::Create to abstract away the
details for most callers.
This is based on https://reviews.llvm.org/D37054 but without the changes to
make passing a Module to Function::Create() mandatory. I have also added
some more tests and fixed the LLParser to accept call instructions for
types in the program address space.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D47541
llvm-svn: 340519
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
Implements PR34259
Intrinsics.h is a very popular header. Most LLVM TUs care about things
like dbg_value, but they don't care how they are implemented. After I
split these out, IntrinsicImpl.inc is 1.7 MB, so this saves each LLVM TU
from scanning 1.7 MB of source that gets pre-processed away.
It also means we can modify intrinsic properties without triggering a
full rebuild, but that's probably less of a win.
I think the next best thing to do would be to split out the target
intrinsics into their own header. Very, very few TUs care about
target-specific intrinsics. It's very hard to split up the target
independent intrinsics like llvm.expect, assume, and dbg.value, though.
llvm-svn: 335407
This patch adds a remark which tells the user when a pass changes the number of
IR instructions in a module.
It can be enabled by using -Rpass-analysis=size-info.
The point of this is to make it easier to collect statistics on how passes
modify programs in terms of code size. This is similar in concept to timing
reports, but using a remark-based interface makes it easy to diff changes over
multiple compilations of the same program.
By adding functionality like this, we can see
* Which passes impact code size the most
* How passes impact code size at different optimization levels
* Which pass might have contributed the most to an overall code size
regression
The patch lives in the legacy pass manager, but since it's simply emitting
remarks, it shouldn't be too difficult to adapt the functionality to the new
pass manager as well. This can also be adapted to handle MachineInstr counts in
code gen passes.
https://reviews.llvm.org/D38768
llvm-svn: 332739