This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit 7c51f02effdbd0d5e12bfd26f9c3b2ab5687c93f because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
AcceptedPublic
Currently CXXMethodDecl::isMoveAssignmentOperator() does not look though type
sugar and so if the parameter is a type alias it will not be able to detect
that the method is a move assignment operator. This PR fixes that and adds a set
of tests that covers that we correctly detect special member functions when
defaulting or deleting them.
This fixes: https://github.com/llvm/llvm-project/issues/56456
Differential Revision: https://reviews.llvm.org/D129591
This reverts commit bdc6974f92304f4ed542241b9b89ba58ba6b20aa because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This patch implements a necessary part of P0848, the overload resolution for destructors.
It is now possible to overload destructors based on constraints, and the eligible destructor
will be selected at the end of the class.
The approach this patch takes is to perform the overload resolution in Sema::ActOnFields
and to mark the selected destructor using a new property in FunctionDeclBitfields.
CXXRecordDecl::getDestructor is then modified to use this property to return the correct
destructor.
This closes https://github.com/llvm/llvm-project/issues/45614.
Reviewed By: #clang-language-wg, erichkeane
Differential Revision: https://reviews.llvm.org/D126194
This should be a NFC cleanup. It removes a unnecessary loop to get the underlying
decl, and add an assertion.
The underlying decl of a using-shadow decl is always the original declaration
has been brought into the scope, clang never builds a nested using-shadow
decl (see Sema::BuildUsingShadowDecl).
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D123422
This builtin returns the address of a global instance of the
`std::source_location::__impl` type, which must be defined (with an
appropriate shape) before calling the builtin.
It will be used to implement std::source_location in libc++ in a
future change. The builtin is compatible with GCC's implementation,
and libstdc++'s usage. An intentional divergence is that GCC declares
the builtin's return type to be `const void*` (for
ease-of-implementation reasons), while Clang uses the actual type,
`const std::source_location::__impl*`.
In order to support this new functionality, I've also added a new
'UnnamedGlobalConstantDecl'. This artificial Decl is modeled after
MSGuidDecl, and is used to represent a generic concept of an lvalue
constant with global scope, deduplicated by its value. It's possible
that MSGuidDecl itself, or some of the other similar sorts of things
in Clang might be able to be refactored onto this more-generic
concept, but there's enough special-case weirdness in MSGuidDecl that
I gave up attempting to share code there, at least for now.
Finally, for compatibility with libstdc++'s <source_location> header,
I've added a second exception to the "cannot cast from void* to T* in
constant evaluation" rule. This seems a bit distasteful, but feels
like the best available option.
Reviewers: aaron.ballman, erichkeane
Differential Revision: https://reviews.llvm.org/D120159
Special classes such as accessor, sampler, and stream need additional
implementation when they are passed from host to device.
This patch is adding a new attribute “sycl_special_class” used to mark
SYCL classes/struct that need the additional compiler handling.
@kpn pointed out that the global variable initialization functions didn't
have the "strictfp" metadata set correctly, and @rjmccall said that there
was buggy code in SetFPModel and StartFunction, this patch is to solve
those problems. When Sema creates a FunctionDecl, it sets the
FunctionDeclBits.UsesFPIntrin to "true" if the lexical FP settings
(i.e. a combination of command line options and #pragma float_control
settings) correspond to ConstrainedFP mode. That bit is used when CodeGen
starts codegen for a llvm function, and it translates into the
"strictfp" function attribute. See bugs.llvm.org/show_bug.cgi?id=44571
Reviewed By: Aaron Ballman
Differential Revision: https://reviews.llvm.org/D102343
This patch addresses a performance issue I noticed when using clang-12 to compile projects of mine. Even though the files weren't too large (around 1k cpp), the compiler was taking more than a minute to compile the source file, much longer than either GCC or MSVC.
Using a profiler it turned out the issue was the isAnyDestructorNoReturn function in CXXRecordDecl. In particular it being recursive, recalculating the property for every invocation, for every field and base class. This showed up in tracebacks in the profiler.
This patch instead adds IsAnyDestructorNoReturn as a Field to the data inside of CXXRecord and updates when a new base class, destructor, or record field member is added.
After this patch the problematic file of mine went from a compile time of 81s, down to 12s.
The patch itself should not change any functionality, just improve performance.
Differential Revision: https://reviews.llvm.org/D104182
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
This implements the 'using enum maybe-qualified-enum-tag ;' part of
1099. It introduces a new 'UsingEnumDecl', subclassed from
'BaseUsingDecl'. Much of the diff is the boilerplate needed to get the
new class set up.
There is one case where we accept ill-formed, but I believe this is
merely an extended case of an existing bug, so consider it
orthogonal. AFAICT in class-scope the c++20 rule is that no 2 using
decls can bring in the same target decl ([namespace.udecl]/8). But we
already accept:
struct A { enum { a }; };
struct B : A { using A::a; };
struct C : B { using A::a;
using B::a; }; // same enumerator
this patch permits mixtures of 'using enum Bob;' and 'using Bob::member;' in the same way.
Differential Revision: https://reviews.llvm.org/D102241
This is a pre-patch for adding using-enum support. It breaks out
the shadow decl handling of UsingDecl to a new intermediate base
class, BaseUsingDecl, altering the decl hierarchy to
def BaseUsing : DeclNode<Named, "", 1>;
def Using : DeclNode<BaseUsing>;
def UsingPack : DeclNode<Named>;
def UsingShadow : DeclNode<Named>;
def ConstructorUsingShadow : DeclNode<UsingShadow>;
Differential Revision: https://reviews.llvm.org/D101777
This attribute applies to a using declaration, and permits importing a
declaration without knowing if that declaration exists. This is useful
for libc++ C wrapper headers that re-export declarations in std::, in
cases where the base C library doesn't provide all declarations.
This attribute was proposed in http://lists.llvm.org/pipermail/cfe-dev/2020-June/066038.html.
rdar://69313357
Differential Revision: https://reviews.llvm.org/D90188
We were always storing a regular ValueDecl* as decomposition declaration
and haven't been using the opportunity to initialize it lazily.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D99455
Swapping the order of Init and MemberOrEllipsisLocation removes 8 bytes (20%) of padding on 64bit builds.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D97191
- The failures are all cc1-based tests due to the missing `-aux-triple` options,
which is always prepared by the driver in CUDA/HIP compilation.
- Add extra check on the missing aux-targetinfo to prevent crashing.
[hip][cuda] Enable extended lambda support on Windows.
- On Windows, extended lambda has extra issues due to the numbering
schemes are different between the host compilation (Microsoft C++ ABI)
and the device compilation (Itanium C++ ABI. Additional device side
lambda number is required per lambda for the host compilation to
correctly mangle the device-side lambda name.
- A hybrid numbering context `MSHIPNumberingContext` is introduced to
number a lambda for both host- and device-compilations.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D69322
This reverts commit 4874ff02417916cc9ff994b34abcb5e563056546.
This reverts commit a2fdf9d4d734732a6fa9288f1ffdf12bf8618123.
Slightly speculative, seeing several cuda tests fail on this
Windows bot: http://45.33.8.238/win/32620/step_7.txt
- On Windows, extended lambda has extra issues due to the numbering
schemes are different between the host compilation (Microsoft C++ ABI)
and the device compilation (Itanium C++ ABI. Additional device side
lambda number is required per lambda for the host compilation to
correctly mangle the device-side lambda name.
- A hybrid numbering context `MSHIPNumberingContext` is introduced to
number a lambda for both host- and device-compilations.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D69322
The C++ standard wording doesn't appear to properly handle the case
where a class inherits a default constructor from a base class. Various
properties of classes are defined in terms of the corresponding property
of the default constructor, and in this case, the class does not have a
default constructor despite being default-constructible, which the
wording doesn't handle properly.
This change implements a tentative fix for these problems, which has
also been proposed to the C++ committee: if a class would inherit a
default constructor, and does not explicitly declare one, then one is
implicitly declared.
getAs<> can return null if the cast is invalid, which can lead to null pointer deferences. Use castAs<> instead which will assert that the cast is valid.
As mentioned in the defect, the lambda static invoker does not follow
the calling convention of the lambda itself, which seems wrong. This
patch ensures that the calling convention of operator() is passed onto
the invoker and conversion-operator type.
This is accomplished by extracting the calling-convention determination
code out into a separate function in order to better reflect the 'thiscall'
work, as well as somewhat better support the future implementation of
https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623
For any target (basically just win32) that has a different free and
static function calling convention, this generates BOTH alternatives.
This required some work to get the Windows mangler to work correctly for
this, as well as some tie-breaking for the unary operators.
Differential Revision: https://reviews.llvm.org/D89559
PartialDiagnostic misses some functions compared to DiagnosticBuilder.
This patch refactors DiagnosticBuilder and PartialDiagnostic, extracts
the common functionality so that the streaming << operators are
shared.
Differential Revision: https://reviews.llvm.org/D84362
This reverts commit 8e780a1653e6f87755a447e921b8f929d8b70996.
DiagnosticBuilder is a value type, created on the stack everywhere. IMO
we should not be adding a vtable to it, and making very operator<< use a
virtual interface. There are other feasible designs for implementing
this. The original review, D84362, was approved by @tra, who is
responsible for Clang's CUDA support, but it wasn't reviewed by @rsmith
or anyone responsible for clang's diagnostic library.
This recommits 829d14ee0a6aa79c89f7f3d9fcd9d27d3efd2b91.
The patch was reverted due to a regression in some CUDA app
which was thought to be caused by this patch. However, investigation
showed that the regression was due to some other issues, therefore
recommit this patch.
template parameters.
No support for the new kinds of non-type template argument yet.
This is not entirely NFC for prior language modes: we have historically
incorrectly accepted rvalue references as the types of non-type template
parameters. Such invalid code is now rejected.
PartialDiagnostic misses some functions compared to DiagnosticBuilder.
This patch refactors DiagnosticBuilder and PartialDiagnostic, extracts
the common functionality so that the streaming << operators are
shared.
Differential Revision: https://reviews.llvm.org/D84362
trivial.
We previously took a shortcut by assuming that if a subobject had a
trivial copy assignment operator (with a few side-conditions), we would
always invoke it, and could avoid going through overload resolution.
That turns out to not be correct in the presenve of ref-qualifiers (and
also won't be the case for copy-assignments with requires-clauses
either). Use the same logic for lazy declaration of copy-assignments
that we use for all other special member functions.
Previously committed as c57f8a3a20540fcf9fbf98c0a73f381ec32fce2a. This
now also includes an extension of LLDB's workaround for handling special
members without the help of Sema to cover copy assignments.