into StoreManager::CastRegion. Both methods were practically identical, and this
is core logic that is common to all StoreManagers since it defines the basic
invariants of the abstract memory model.
llvm-svn: 69730
when creating symbolic values, we distinguish between location and non-location
values. For location values, we create a symbolic region instead of a
loc::SymbolVal.
llvm-svn: 68373
Zhongxing and I discussed by email.
Main changes:
- Removed SymIntConstraintVal and SymIntConstraint
- Added SymExpr as a parent class to SymbolData, SymSymExpr, SymIntExpr
- Added nonloc::SymExprVal to wrap SymExpr
- SymbolRef is now just a typedef of 'const SymbolData*'
- Bunch of minor code cleanups in how some methods were invoked (no functionality change)
This changes are part of a long-term plan to have full symbolic expression
trees. This will be useful for lazily evaluating complicated expressions.
llvm-svn: 67731
offset may be different that the base. Ultimately we need a better solution for
these issues, but this point-by-point fixes are gradually outlining the scope of
the problem.
llvm-svn: 66638
analyzer for array subscript expressions involving bases that are vectors. This
solution is probably a hack: it gets the lvalue of the vector instead of an
rvalue like all other types. This should be reviewed (big FIXME in
GRExprEngine).
llvm-svn: 65366
for FieldRegion. This enables us to track more values.
Simplify SymbolicRegion::getRValueType(). We assume the symbol always has
pointer type.
llvm-svn: 63928
do the symblic regions associated with them and we need them to be typed.
Current SymbolicRegion::getRValueType() method is very restricting. It may be
modified when we are more clear about what could be the types of symblic
regions.
BasicConstraintManager::Assume() is changed due to that now SymblicRegion is a
subclass of SubRegion.
llvm-svn: 63844
- NonLoc::MakeVal() would use sizeof(unsigned) (literally) instead of consulting
ASTContext for the size (in bits) of 'int'. While it worked, it was a
conflation of concepts and using ASTContext.IntTy is 100% correct.
- RegionStore::getSizeInElements() no longer assumes that a VarRegion has the
type "ConstantArray", and handles the case when uses use ordinary variables
as if they were arrays.
- Fixed ElementRegion::getRValueType() to just return the rvalue type of its
"array region" in the case the array didn't have ArrayType.
- All of this fixes <rdar://problem/6541136>
llvm-svn: 63347
their associated APIs. We no longer need separate SymbolData objects
for fields, variables, etc. Instead, we now associated symbols with
the "rvalue" of a MemRegion (i.e., the value stored at that region).
Now we only have two kinds of SymbolData objects: SymbolRegionRValue
and SymbolConjured.
This cleanup also makes the distinction between a SymbolicRegion and a
symbolic value that is a location much clearer. A SymbolicRegion
represents a chunk of symbolic memory, while a symbolic location is
just a "pointer" with different possible values. Without any specific
knowledge, a symbolic location resolves (i.e., via a dereference) to a
SymbolicRegion. In the future, when we do better alias reasoning, a
symbolic location can become an alias for another location, thus
merging the constraints on the referred SymbolicRegion with the other
region.
llvm-svn: 62769
Because the RegionStore can reason about values beyond the reasoning power of BasicStore, this patch splits some of the test cases for the retain/release checker to have versions that are handled by RegionStore (more warnings) and BasicStore (less warnings).
llvm-svn: 62667