This is the result of an audit of all of the ABIs in clang to implement
and enable the type for those targets.
Additionally, this finds an issue with integer-promotion passing for a
few platforms when using _ExtInt of < int, so this also corrects that
resulting in signext/zeroext being on a params of those types in some
platforms.
Differential Revisions: https://reviews.llvm.org/D79118
Use unique_ptr to manage the lifetime of ABIInfo member inside TargetCodeGenInfo.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D79033
After speaking with Craig Topper about some recent defects, he pointed
out that _ExtInts should be passed indirectly if larger than the largest
int register, and like ints when smaller than that. This patch
implements that.
Note that this changed the way vaargs worked quite a bit, but they still
work.
Differential Revision: https://reviews.llvm.org/D78785
Summary:
Change the default ABI to be compatible with GCC. For 32-bit ELF
targets other than Linux, Clang now returns small structs in registers
r3/r4. This affects FreeBSD, NetBSD, OpenBSD. There is no change for
32-bit Linux, where Clang continues to return all structs in memory.
Add clang options -maix-struct-return (to return structs in memory) and
-msvr4-struct-return (to return structs in registers) to be compatible
with gcc. These options are only for PPC32; reject them on PPC64 and
other targets. The options are like -fpcc-struct-return and
-freg-struct-return for X86_32, and use similar code.
To actually return a struct in registers, coerce it to an integer of the
same size. LLVM may optimize the code to remove unnecessary accesses to
memory, and will return i32 in r3 or i64 in r3:r4.
Fixes PR#40736
Patch by George Koehler!
Reviewed By: jhibbits, nemanjai
Differential Revision: https://reviews.llvm.org/D73290
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: sdesmalen, efriedma, krememek
Reviewed By: sdesmalen, efriedma
Subscribers: dexonsmith, Charusso, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77257
Summary:
- Use `device_builtin_surface` and `device_builtin_texture` for
surface/texture reference support. So far, both the host and device
use the same reference type, which could be revised later when
interface/implementation is stablized.
Reviewers: yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77583
This reverts commit 6a9ad5f3f4ac66f0cae592e911f4baeb6ee5eca6.
The patch breaks CUDA copmilation.
Differential Revision: https://reviews.llvm.org/D76365
Summary:
- Even though the bindless surface/texture interfaces are promoted,
there are still code using surface/texture references. For example,
[PR#26400](https://bugs.llvm.org/show_bug.cgi?id=26400) reports the
compilation issue for code using `tex2D` with texture references. For
better compatibility, this patch proposes the support of
surface/texture references.
- Due to the absent documentation and magic headers, it's believed that
`nvcc` does use builtins for texture support. From the limited NVVM
documentation[^nvvm] and NVPTX backend texture/surface related
tests[^test], it's believed that surface/texture references are
supported by replacing their reference types, which are annotated with
`device_builtin_surface_type`/`device_builtin_texture_type`, with the
corresponding handle-like object types, `cudaSurfaceObject_t` or
`cudaTextureObject_t`, in the device-side compilation. On the host
side, that global handle variables are registered and will be
established and updated later when corresponding binding/unbinding
APIs are called[^bind]. Surface/texture references are most like
device global variables but represented in different types on the host
and device sides.
- In this patch, the following changes are proposed to support that
behavior:
+ Refine `device_builtin_surface_type` and
`device_builtin_texture_type` attributes to be applied on `Type`
decl only to check whether a variable is of the surface/texture
reference type.
+ Add hooks in code generation to replace that reference types with
the correponding object types as well as all accesses to them. In
particular, `nvvm.texsurf.handle.internal` should be used to load
object handles from global reference variables[^texsurf] as well as
metadata annotations.
+ Generate host-side registration with proper template argument
parsing.
---
[^nvvm]: https://docs.nvidia.com/cuda/pdf/NVVM_IR_Specification.pdf
[^test]: https://raw.githubusercontent.com/llvm/llvm-project/master/llvm/test/CodeGen/NVPTX/tex-read-cuda.ll
[^bind]: See section 3.2.11.1.2 ``Texture reference API` in [CUDA C Programming Guide](https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf).
[^texsurf]: According to NVVM IR, `nvvm.texsurf.handle` should be used. But, the current backend doesn't have that supported. We may revise that later.
Reviewers: tra, rjmccall, yaxunl, a.sidorin
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76365
This has no effect on how LLVM passes the arguments, but it prevents
rewriteWithInAlloca from thinking that these parameters should be part
of the inalloca pack.
Follow-up to D72114
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D74452
This brings back 2af74e27ed7d0832cbdde9cb969aaca7a42e99f9 and reverts
eaabaf7e04fe98990a8177a3e053346395efde1c.
The changes were correct, the code that was broken contained an ODR
violation that assumed that these types are passed equivalently:
struct alignas(uint64_t) Wrapper { uint64_t P };
void f(uint64_t p);
void f(Wrapper p);
MSVC does not pass them the same way, and so clang-cl should not pass
them the same way either.
Summary:
For now, this ABI simply expands all possible aggregate arguments and
returns all possible aggregates directly. This ABI will change rapidly
as we prototype and benchmark a new ABI that takes advantage of
multivalue return and possibly other changes from the MVP ABI.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72972
It broke some Chromium tests, so let's revert until it can be fixed; see
https://crbug.com/1046362
This reverts commit 2af74e27ed7d0832cbdde9cb969aaca7a42e99f9.
MSVC 2013 would refuse to pass highly aligned things (typically vectors
and aggregates) by value. Users would receive this error:
t.cpp(11) : error C2719: 'w': formal parameter with __declspec(align('32')) won't be aligned
t.cpp(11) : error C2719: 'q': formal parameter with __declspec(align('32')) won't be aligned
However, in MSVC 2015, this behavior was changed, and highly aligned
things are now passed indirectly. To avoid breaking backwards
incompatibility, objects that do not have a *required* high alignment
(i.e. double) are still passed directly, even though they are not
naturally aligned. This change implements the new behavior of passing
things indirectly.
The new behavior is:
- up to three vector parameters can be passed in [XYZ]MM0-2
- remaining arguments with required alignment greater than 4 bytes are
passed indirectly
Previously, MSVC never passed things truly indirectly, meaning clang
would always apply the byval attribute to indirect arguments. We had to
go to the trouble of adding inalloca so that non-trivially copyable C++
types could be passed in place without copying the object
representation. When inalloca was added, we asserted that all arguments
passed indirectly must use byval. With this change, that assert no
longer holds, and I had to update inalloca to handle that case. The
implicit sret pointer parameter was already handled this way, and this
change generalizes some of that logic to arguments.
There are two cases that this change leaves unfixed:
1. objects that are non-trivially copyable *and* overaligned
2. vectorcall + inalloca + vectors
For case 1, I need to touch C++ ABI code in MicrosoftCXXABI.cpp, so I
want to do it in a follow-up.
For case 2, my fix is one line, but it will require updating IR tests to
use lots of inreg, so I wanted to separate it out.
Related to D71915 and D72110
Fixes most of PR44395
Reviewed By: rjmccall, craig.topper, erichkeane
Differential Revision: https://reviews.llvm.org/D72114
Summary:
Before this change, X86_32ABIInfo::classifyArgument would be called
twice on vector arguments to vectorcall functions. This function has
side effects to track GPR register usage, and this would lead to
incorrect GPR usage in some cases. The specific case I noticed is from
running out of XMM registers with mixed FP and vector arguments and no
aggregates of any kind. Consider this prototype:
void __vectorcall vectorcall_indirect_vec(
double xmm0, double xmm1, double xmm2, double xmm3, double xmm4,
__m128 xmm5,
__m128 ecx,
int edx,
__m128 mem);
classifyArgument has no effects when called on a plain FP type, but when
called on a vector type, it modifies FreeRegs to model GPR consumption.
However, this should not happen during the vector call first pass.
I refactored the code to unify vectorcall HVA logic with regcall HVA
logic. The conventions pass HVAs in registers differently (expanded vs.
not expanded), but if they do not fit in registers, they both pass them
indirectly by address.
Reviewers: erichkeane, craig.topper
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72110
Summary:
Previously, since these aggregates are > 2*XLen, Clang would think they
were being returned indirectly and thus would decrease the number of
available GPRs available by 1. For long argument lists this could lead
to a struct argument incorrectly being passed indirectly.
Reviewers: asb, lenary
Reviewed By: asb, lenary
Subscribers: luismarques, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, lenary, s.egerton, pzheng, sameer.abuasal, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69590
Summary:
This is documented as the appropriate template modifier for call operands.
Fixes PR44272, and adds a regression test.
Also adds support for operand modifiers in Intel-style inline assembly.
Reviewers: rnk
Reviewed By: rnk
Subscribers: merge_guards_bot, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71677
This is equivalent to the existing `import_name` and `import_module`
attributes which control the import names in the final wasm binary
produced by lld.
This maps the existing
This attribute currently requires a string rather than using the
symbol name for a couple of reasons:
1. Avoid confusion with static and dynamic linking which is
based on symbol name. Exporting a function from a wasm module using
this directive is orthogonal to both static and dynamic linking.
2. Avoids name mangling.
Differential Revision: https://reviews.llvm.org/D70520
AggValueSlot
This reapplies 8a5b7c35709d9ce1f44a99f0c5b084bf2696ea17 after a null
dereference bug in CGOpenMPRuntime::emitUserDefinedMapper.
Original commit message:
This is needed for the pointer authentication work we plan to do in the
near future.
a63a81bd99/clang/docs/PointerAuthentication.rst
Summary:
- As variadic parameters have the lowest rank in overload resolution,
without real usage of `va_arg`, they are commonly used as the
catch-all fallbacks in SFINAE. As the front-end still reports errors
on calls to `va_arg`, the declaration of functions with variadic
arguments should be allowed in general.
Reviewers: jlebar, tra, yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69389
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<> directly and if not assert will fire for us.
llvm-svn: 373918
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<RecordType> directly and if not assert will fire for us.
llvm-svn: 373584
As far as I can tell, gcc passes 256/512 bit vectors __int128 in memory. And passes a vector of 1 _int128 in an xmm register. The backend considers <X x i128> as an illegal type and will scalarize any arguments with that type. So we need to coerce the argument types in the frontend to match to avoid the illegal type.
I'm restricting this to change to Linux and NetBSD based on the
how similar ABI changes have been handled in the past.
PS4, FreeBSD, and Darwin are unaffected. I've also added a
new -fclang-abi-compat version to restore the old behavior.
This issue was identified in PR42607. Though even with the types changed, we still seem to be doing some unnecessary stack realignment.
llvm-svn: 371169
Summary:
r337347 added support for the Signal Processing Engine (SPE) to LLVM.
This follows that up with the clang side.
This adds -mspe and -mno-spe, to match GCC.
Subscribers: nemanjai, kbarton, cfe-commits
Differential Revision: https://reviews.llvm.org/D49754
llvm-svn: 371066
Summary:
D66168 passes size 0 structs indirectly, while the wasm backend expects it to
be passed directly. This causes subsequent variadic arguments to be read
incorrectly.
This diff changes it so that size 0 structs are passed directly.
Reviewers: dschuff, tlively, sbc100
Reviewed By: dschuff
Subscribers: jgravelle-google, aheejin, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66255
llvm-svn: 369042
Summary:
In the WebAssembly backend, when lowering variadic function calls, non-single
member aggregate type arguments are always passed by pointer.
However, when emitting va_arg code in clang, the arguments are instead read as
if they are passed directly. This results in the pointer being read as the
actual structure.
Fixes https://github.com/emscripten-core/emscripten/issues/9042.
Reviewers: tlively, sbc100, kripken, aheejin, dschuff
Reviewed By: dschuff
Subscribers: dschuff, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66168
llvm-svn: 368750
The RISC-V hard float calling convention requires the frontend to:
* Detect cases where, once "flattened", a struct can be passed using
int+fp or fp+fp registers under the hard float ABI and coerce to the
appropriate type(s)
* Track usage of GPRs and FPRs in order to gate the above, and to
determine when signext/zeroext attributes must be added to integer
scalars
This patch attempts to do this in compliance with the documented ABI,
and uses ABIArgInfo::CoerceAndExpand in order to do this. @rjmccall, as
author of that code I've tagged you as reviewer for initial feedback on
my usage.
Note that a previous version of the ABI indicated that when passing an
int+fp struct using a GPR+FPR, the int would need to be sign or
zero-extended appropriately. GCC never did this and the ABI was changed,
which makes life easier as ABIArgInfo::CoerceAndExpand can't currently
handle sign/zero-extension attributes.
Re-landed after backing out 366450 due to missed hunks.
Differential Revision: https://reviews.llvm.org/D60456
llvm-svn: 366480