Today `-split-machine-functions` and `-fbasic-block-sections={all,list}`
cannot be combined with `-basic-block-sections=labels` (the labels
option will be ignored).
The inconsistency comes from the way basic block address map -- the
underlying mechanism for basic block labels -- encodes basic block
addresses
(https://lists.llvm.org/pipermail/llvm-dev/2020-July/143512.html).
Specifically, basic block offsets are computed relative to the function
begin symbol. This relies on functions being contiguous which is not the
case for MFS and basic block section binaries. This means Propeller
cannot use binary profiles collected from these binaries, which limits
the applicability of Propeller for iterative optimization.
To make the `SHT_LLVM_BB_ADDR_MAP` feature work with basic block section
binaries, we propose modifying the encoding of this section as follows.
First let us review the current encoding which emits the address of each
function and its number of basic blocks, followed by basic block entries
for each basic block.
| | |
|--|--|
| Address of the function | Function Address |
| Number of basic blocks in this function | NumBlocks |
| BB entry 1
| BB entry 2
| ...
| BB entry #NumBlocks
To make this work for basic block sections, we treat each basic block
section similar to a function, except that basic block sections of the
same function must be encapsulated in the same structure so we can map
all of them to their single function.
We modify the encoding to first emit the number of basic block sections
(BB ranges) in the function. Then we emit the address map of each basic
block section section as before: the base address of the section, its
number of blocks, and BB entries for its basic block. The first section
in the BB address map is always the function entry section.
| | |
|--|--|
| Number of sections for this function | NumBBRanges |
| Section 1 begin address | BaseAddress[1] |
| Number of basic blocks in section 1 | NumBlocks[1] |
| BB entries for Section 1
|..................|
| Section #NumBBRanges begin address | BaseAddress[NumBBRanges] |
| Number of basic blocks in section #NumBBRanges |
NumBlocks[NumBBRanges] |
| BB entries for Section #NumBBRanges
The encoding of basic block entries remains as before with the minor
change that each basic block offset is now computed relative to the
begin symbol of its containing BB section.
This patch adds a new boolean codegen option `-basic-block-address-map`.
Correspondingly, the front-end flag `-fbasic-block-address-map` and LLD
flag `--lto-basic-block-address-map` are introduced.
Analogously, we add a new TargetOption field `BBAddrMap`. This means BB
address maps are either generated for all functions in the compiling
unit, or for none (depending on `TargetOptions::BBAddrMap`).
This patch keeps the functionality of the old
`-fbasic-block-sections=labels` option but does not remove it. A
subsequent patch will remove the obsolete option.
We refactor the `BasicBlockSections` pass by separating the BB address
map and BB sections handing to their own functions (named
`handleBBAddrMap` and `handleBBSections`). `handleBBSections` renumbers
basic blocks and places them in their assigned sections.
`handleBBAddrMap` is invoked after `handleBBSections` (if requested) and
only renumbers the blocks.
- New tests added:
- Two tests basic-block-address-map-with-basic-block-sections.ll and
basic-block-address-map-with-mfs.ll to exercise the combination of
`-basic-block-address-map` with `-basic-block-sections=list` and
'-split-machine-functions`.
- A driver sanity test for the `-fbasic-block-address-map` option
(basic-block-address-map.c).
- An LLD test for testing the `--lto-basic-block-address-map` option.
This reuses the LLVM IR from `lld/test/ELF/lto/basic-block-sections.ll`.
- Renamed and modified the two existing codegen tests for basic block
address map (`basic-block-sections-labels-functions-sections.ll` and
`basic-block-sections-labels.ll`)
- Removed `SHT_LLVM_BB_ADDR_MAP_V0` tests. Full deprecation of
`SHT_LLVM_BB_ADDR_MAP_V0` and `SHT_LLVM_BB_ADDR_MAP` version less than 2
will happen in a separate PR in a few months.
Add new pass manager support to `llc`. Users can use
`--passes=pass1,pass2...` to run mir passes, and use `--enable-new-pm`
to run default codegen pipeline.
This patch is taken from [D83612](https://reviews.llvm.org/D83612), the
original author is @yuanfang-chen.
---------
Co-authored-by: Yuanfang Chen <455423+yuanfang-chen@users.noreply.github.com>
Unfortunately the legacy pass system can't recognize `no-op-module` and
`no-op-function` so it causes test failure in `CodeGenTests`. Add a
workaround in function `PassInfo *getPassInfo(StringRef PassName)`,
`TargetPassConfig.cpp`.
Port CodeGenPrepare to new pass manager and dependency
BasicBlockSectionsProfileReader
Fixes: #75380
Co-authored-by: Krishna-13-cyber <84722531+Krishna-13-cyber@users.noreply.github.com>
Revert e0c554ad87d18dcbfcb9b6485d0da800ae1338d1 "Port CodeGenPrepare to new pass manager (and BasicBlockSectionsProfil… (#75380)"
Revert #75380 and #77054 as they were breaking EXPENSIVE_CHECKS buildbots: https://lab.llvm.org/buildbot/#/builders/104
Port CodeGenPrepare to new pass manager and dependency
BasicBlockSectionsProfileReader
Fixes: #64560
Co-authored-by: Krishna-13-cyber <84722531+Krishna-13-cyber@users.noreply.github.com>
These options are used by `TargetPassConfig` to build CodeGen pass
pipeline, add them to `CGPassBuilderOption` so `CodeGenPassBuilder` can
use them. Currently not all options are added, but it is enough to build
a prototype of `CodeGenPassBuilder`. Part of #69879.
This pass is broken and looks like no one uses it for the last 15+ years.
```c++
bool Printer::runOnFunction(Function &F) {
if (F.hasGC())
return false;
GCFunctionInfo *FD = &getAnalysis<GCModuleInfo>().getFunctionInfo(F);
```
```c++
GCFunctionInfo &GCModuleInfo::getFunctionInfo(const Function &F) {
assert(!F.isDeclaration() && "Can only get GCFunctionInfo for a definition!");
assert(F.hasGC()); // Equivalent to `assert(false);` when called by `Printer::runOnFunction`
```
See also #74972.
28b9126879
introduced the path cloning format in the basic-block-sections profile.
This PR validates and applies path clonings.
A path cloning is valid if all of these conditions hold:
1. All bb ids in the path are mapped to existing blocks.
2. Each two consecutive bb ids in the path have a successor relationship
in the CFG.
3. The path does not include a block with indirect branches, except
possibly as the last block.
Applying a path cloning involves cloning all blocks in the path (except
the first one) and setting up their branches.
Once all clonings are applied, the cluster information is used to guide
block layout in the modified function.
The indirect lowering hinders the outliner's ability to see that
sequences are in fact common, since the sequence similarity is rendered
opaque by the register callee. The size savings from making them
indirect seems to be dwarfed by the outliner's savings from
de-duplication.
rdar://115178034
rdar://115459865
This will make it easy for callers to see issues with and fix up calls
to createTargetMachine after a future change to the params of
TargetMachine.
This matches other nearby enums.
For downstream users, this should be a fairly straightforward
replacement,
e.g. s/CodeGenOpt::Aggressive/CodeGenOptLevel::Aggressive
or s/CGFT_/CodeGenFileType::
Propeller and pseudo-probes map profiles back to Machine IR via basic block addresses that are stored in metadata sections.
Empty basic blocks (basic blocks without real code) obfuscate the profile mapping because their addresses collide with their next basic blocks.
For instance, the fallthrough block of an empty block should always be adjacent to it. Otherwise, a completely unnecessary jump would be added.
This patch adds a MachineFunction pass named `GCEmptyBasicBlocks` which attempts to garbage-collect the empty blocks before the `BasicBlockSections` and pass.
This pass removes each empty basic block after redirecting its incoming edges to its fall-through block.
The garbage-collection is not complete. We keep the empty block in 4 cases:
1. The empty block is an exception handling pad.
2. The empty block has its address taken.
3. The empty block is the last block of the function and it has
predecessors.
4. The empty block is the only block of the function.
The first three cases are extremely rare in normal code (no cases for the clang binary). Removing the blocks under the first two cases requires modifying exception handling structures and operands of non-terminator instructions -- which is doable but not worth the additional complexity in the pass.
Reviewed By: tmsriram
Differential Revision: https://reviews.llvm.org/D107534
Because branch relaxation needs to factor in if branches target
a block in the same section or a different one, it needs to run
after the Basic Block Sections / Machine Function Splitting passes.
Because Jump table compression relies on block offsets remaining
fixed after the table is compressed, we must also move the JT
compression pass.
The only tests affected are ones enforcing just the ordering and
the a few that have basic block ids changed because RenumberBlocks
hasn't run yet.
Differential Revision: https://reviews.llvm.org/D153829
This CL adds a new discriminator pass. Also adds a new sample profile
loading pass when MFS is enabled.
Differential Revision: https://reviews.llvm.org/D152577
Expand large or unknown size memory intrinsics into loops in the
default lowering pipeline if the target doesn't have the corresponding
libfunc. Previously AMDGPU had a custom pass which existed to call the
expansion utilities.
With a default no-libcall option, we can remove the libfunc checks in
LoopIdiomRecognize for these, which never made any sense. This also
provides a path to lifting the immarg restriction on
llvm.memcpy.inline.
There seems to be a bug where TLI reports functions as available if
you use -march and not -mtriple.
The kernel and kext environments do not provide the `__cxa_atexit()`
function, so we can't use it for lowering global module destructors.
Unfortunately, just querying for "compiling for kernel/kext?" in the LTO
pipeline isn't possible (kernel/kext identifier isn't part of the triple
yet) so we need to pass down a CodeGen flag.
rdar://93536111
Differential Revision: https://reviews.llvm.org/D148967
Remove the `-lower-global-dtors-via-cxa-atexit` escape hatch introduced
in D121736 [1], which switched the default lowering of global
destructors on MachO to use `__cxa_atexit()` to avoid emitting
deprecated `__mod_term_func` sections.
I added this flag as an escape hatch in case the switch causes any
problems. We didn't discover any problems so now we can remove it.
[1] https://reviews.llvm.org/D121736
rdar://90277838
Differential Revision: https://reviews.llvm.org/D145715
Make the access to profile data going through virtual file system so the
inputs can be remapped. In the context of the caching, it can make sure
we capture the inputs and provided an immutable input as profile data.
Reviewed By: akyrtzi, benlangmuir
Differential Revision: https://reviews.llvm.org/D139052
Issue #58168 describes the difficulty diagnosing stack size issues
identified by -Wframe-larger-than. For simple code, its easy to
understand the stack layout and where space is being allocated, but in
more complex programs, where code may be heavily inlined, unrolled, and
have duplicated code paths, it is no longer easy to manually inspect the
source program and understand where stack space can be attributed.
This patch implements a machine function pass that emits remarks with a
textual representation of stack slots, and also outputs any available
debug information to map source variables to those slots.
The new behavior can be used by adding `-Rpass-analysis=stack-frame-layout`
to the compiler invocation. Like other remarks the diagnostic
information can be saved to a file in a machine readable format by
adding -fsave-optimzation-record.
Fixes: #58168
Reviewed By: nickdesaulniers, thegameg
Differential Revision: https://reviews.llvm.org/D135488
Issue #58168 describes the difficulty diagnosing stack size issues
identified by -Wframe-larger-than. For simple code, its easy to
understand the stack layout and where space is being allocated, but in
more complex programs, where code may be heavily inlined, unrolled, and
have duplicated code paths, it is no longer easy to manually inspect the
source program and understand where stack space can be attributed.
This patch implements a machine function pass that emits remarks with a
textual representation of stack slots, and also outputs any available
debug information to map source variables to those slots.
The new behavior can be used by adding `-Rpass-analysis=stack-frame-layout`
to the compiler invocation. Like other remarks the diagnostic
information can be saved to a file in a machine readable format by
adding -fsave-optimzation-record.
Fixes: #58168
Reviewed By: nickdesaulniers, thegameg
Differential Revision: https://reviews.llvm.org/D135488
HWASAN exposes some non-determinism in the pass and triggers:
ScalarEvolution.cpp:11540: bool llvm::ScalarEvolution::isLoopEntryGuardedByCond(const Loop *, ICmpInst::Predicate, const SCEV *, const SCEV *): Assertion `isAvailableAtLoopEntry(LHS, L) && "LHS is not available at Loop Entry"' failed.
E.g.
https://lab.llvm.org/buildbot/#/builders/236/builds/1629/steps/16/logs/stdio
is broken after D137838. I tried to split D137838 into smaller patches
and the one which reproduced was just a move of cpp from one dir to another.
Maybe it has something do to with comparison of tagged pointeres and
PtrSets used in pass.
Issues is hard to reproduce, even slight changes in path, or preprocessing
cpp file hide it.
The CFL Steens/Anders alias analysis passes are not enabled by
default, and to the best of my knowledge have no pathway towards
ever being enabled by default. The last significant interest in
these passes seems to date back to 2016. Given the little
maintenance these have seen in recent times, I also have very
little confidence in the correctness of these passes. I don't
think we should keep these in-tree.
Differential Revision: https://reviews.llvm.org/D139703
llvm::Any had several bugs in the past, due to being sensitive to symbol
visibility. (See D101972 and D108943)
Even with these fixes applied, I still encounter the same issue on
Windows.
Similar to llvm::Optional going away in favor of std::optional, we can
use std::any from C++17.
Using std::any fixes the problem and puts the burden to do it correctly
on the standard library.
Differential Revision: https://reviews.llvm.org/D139532
This reverts commit 122efef8ee9be57055d204d52c38700fe933c033.
- Patch fixed to not reuse definitions from predecessors in EH landing pads.
- Late review suggestions (by MaskRay) have been addressed.
- M68k/pipeline.ll test updated.
- Init captures added in processBlock() to avoid capturing structured bindings.
- RISCV has this disabled for now.
Original commit message:
A new pass MachineLateInstrsCleanup is added to be run after PEI.
This is a simple pass that removes redundant and identical instructions
whenever found by scanning the MF once while keeping track of register
definitions in a map. These instructions are typically immediate loads
resulting from rematerialization, and address loads emitted by target in
eliminateFrameInde().
This is enabled by default, but a target could easily disable it by means of
'disablePass(&MachineLateInstrsCleanupID);'.
This late cleanup is naturally not "optimal" in removing instructions as it
is done by looking at phys-regs, but still quite effective. It would be
desirable to improve other parts of CodeGen and avoid these redundant
instructions in the first place, but there are no ideas for this yet.
Differential Revision: https://reviews.llvm.org/D123394
Reviewed By: RKSimon, foad, craig.topper, arsenm, asb
Currently per-function metadata consists of:
(start-pc, size, features)
This adds a new UAR feature and if it's set an additional element:
(start-pc, size, features, stack-args-size)
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D136078
Init captures added in processBlock() to avoid capturing structured bindings,
which caused the build problems (with clang).
RISCV has this disabled for now until problems relating to post RA pseudo
expansions are resolved.
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
A new pass MachineLateInstrsCleanup is added to be run after PEI.
This is a simple pass that removes redundant and identical instructions
whenever found by scanning the MF once while keeping track of register
definitions in a map. These instructions are typically immediate loads
resulting from rematerialization, and address loads emitted by target in
eliminateFrameInde().
This is enabled by default, but a target could easily disable it by means of
'disablePass(&MachineLateInstrsCleanupID);'.
This late cleanup is naturally not "optimal" in removing instructions as it
is done by looking at phys-regs, but still quite effective. It would be
desirable to improve other parts of CodeGen and avoid these redundant
instructions in the first place, but there are no ideas for this yet.
Differential Revision: https://reviews.llvm.org/D123394
Reviewed By: RKSimon, foad, craig.topper, arsenm, asb
As stated in
https://discourse.llvm.org/t/rfc-llc-add-expandlargeintfpconvert-pass-for-fp-int-conversion-of-large-bitint/65528,
this implementation is very similar to ExpandLargeDivRem, which expands
‘fptoui .. to’, ‘fptosi .. to’, ‘uitofp .. to’, ‘sitofp .. to’ instructions
with a bitwidth above a threshold into auto-generated functions. This is
useful for targets like x86_64 that cannot lower fp convertions with more
than 128 bits. The expanded nodes are referring from the IR generated by
`compiler-rt/lib/builtins/floattidf.c`, `compiler-rt/lib/builtins/fixdfti.c`,
and etc.
Corner cases:
1. For fp16: as there is no related builtins added in compliler-rt. So I
mainly utilized the fp32 <-> fp16 lib calls to implement.
2. For fp80: as this pass is soft fp emulation and no fp80 instructions can
help in this problem. I recommend users to deprecate this usage. For now, the
implementation uses fp128 as the temporary conversion type and inserts
fptrunc/ext at top/end of the function.
3. For bf16: as clang FE currently doesn't support bf16 algorithm operations
(convert to int, float, +, -, *, ...), this patch doesn't consider bf16 for
now.
4. For unsigned FPToI: since both default hardware behaviors and libgcc are
ignoring "returns 0 for negative input" spec. This pass follows this old way
to ignore unsigned FPToI. See this example:
https://gcc.godbolt.org/z/bnv3jqW1M
The end-to-end tests are uploaded at https://reviews.llvm.org/D138261
Reviewed By: LuoYuanke, mgehre-amd
Differential Revision: https://reviews.llvm.org/D137241
Currently per-function metadata consists of:
(start-pc, size, features)
This adds a new UAR feature and if it's set an additional element:
(start-pc, size, features, stack-args-size)
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D136078
Currently per-function metadata consists of:
(start-pc, size, features)
This adds a new UAR feature and if it's set an additional element:
(start-pc, size, features, stack-args-size)
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D136078
This reverts commit a1255dc467f7ce57a966efa76bbbb4ee91d9115a.
This patch results in:
llvm/lib/CodeGen/SanitizerBinaryMetadata.cpp:57:17: error: no member
named 'size' in 'llvm::MDTuple'