can be used to improve the locations when generating remarks for loops.
Depends on the companion LLVM change r286227.
Patch by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D25764
llvm-svn: 286456
abstract information about the callee. NFC.
The goal here is to make it easier to recognize indirect calls and
trigger additional logic in certain cases. That logic will come in
a later patch; in the meantime, I felt that this was a significant
improvement to the code.
llvm-svn: 285258
Summary:
Current generation of lifetime intrinsics does not handle cases like:
```
{
char x;
l1:
bar(&x, 1);
}
goto l1;
```
We will get code like this:
```
%x = alloca i8, align 1
call void @llvm.lifetime.start(i64 1, i8* nonnull %x)
br label %l1
l1:
%call = call i32 @bar(i8* nonnull %x, i32 1)
call void @llvm.lifetime.end(i64 1, i8* nonnull %x)
br label %l1
```
So the second time bar was called for x which is marked as dead.
Lifetime markers here are misleading so it's better to remove them at all.
This type of bypasses are rare, e.g. code detects just 8 functions building
clang (2329 targets).
PR28267
Reviewers: eugenis
Subscribers: beanz, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D24693
llvm-svn: 285176
Summary: D24693 will need access to it from other places
Reviewers: eugenis
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D24695
llvm-svn: 285158
constexpr variable.
When compiling a constexpr NSString initialized with an objective-c
string literal, CodeGen emits objc_storeStrong on an uninitialized
alloca, which causes a crash.
This patch folds the code in EmitScalarInit into EmitStoreThroughLValue
and fixes the crash by calling objc_retain on the string instead of
using objc_storeStrong.
rdar://problem/28562009
Differential Revision: https://reviews.llvm.org/D25547
llvm-svn: 284516
Summary: _BitScan intrinsics (and some others, for example _Interlocked and _bittest) are supposed to work on both ARM and x86. This is an attempt to isolate them, avoiding repeating their code or writing separate function for each builtin.
Reviewers: hans, thakis, rnk, majnemer
Subscribers: RKSimon, cfe-commits, aemerson
Differential Revision: https://reviews.llvm.org/D25264
llvm-svn: 284060
Summary:
With this commit simple coroutines can be created in plain C using coroutine builtins.
Reviewers: rnk, EricWF, rsmith
Subscribers: modocache, mgorny, mehdi_amini, beanz, cfe-commits
Differential Revision: https://reviews.llvm.org/D24373
llvm-svn: 283155
Instead of ignoring the evaluation order rule, ignore the "destroy parameters
in reverse construction order" rule for the small number of problematic cases.
This only causes incorrect behavior in the rare case where both parameters to
an overloaded operator <<, >>, ->*, &&, ||, or comma are of class type with
non-trivial destructor, and the program is depending on those parameters being
destroyed in reverse construction order.
We could do a little better here by reversing the order of parameter
destruction for those functions (and reversing the argument evaluation order
for all direct calls, not just those with operator syntax), but that is not a
complete solution to the problem, as the same situation can be reached by an
indirect function call.
Approach reviewed off-line by rnk.
llvm-svn: 282777
function correctly when targeting MS ABIs (this appears to have never mattered
prior to this change).
Update test case to always cover both 32-bit and 64-bit Windows ABIs, since
they behave somewhat differently from each other here.
Update test case to also cover operators , && and ||, which it appears are also
affected by P0145R3 (they're not explicitly called out by the design document,
but this is the emergent behavior of the existing wording).
Original commit message:
P0145R3 (C++17 evaluation order tweaks): evaluate the right-hand side of
assignment and compound-assignment operators before the left-hand side. (Even
if it's an overloaded operator.)
This completes the implementation of P0145R3 + P0400R0 for all targets except
Windows, where the evaluation order guarantees for <<, >>, and ->* are
unimplementable as the ABI requires the function arguments are evaluated from
right to left (because parameter destructors are run from left to right in the
callee).
llvm-svn: 282619
assignment and compound-assignment operators before the left-hand side. (Even
if it's an overloaded operator.)
This completes the implementation of P0145R3 + P0400R0 for all targets except
Windows, where the evaluation order guarantees for <<, >>, and ->* are
unimplementable as the ABI requires the function arguments are evaluated from
right to left (because parameter destructors are run from left to right in the
callee).
llvm-svn: 282556
* recurse through intermediate LabelStmts and AttributedStmts when checking
whether a statement inside a switch declares a variable
* if the end of a compound statement is reachable from the chosen case label,
and the compound statement contains a variable declaration, it's not valid
to just emit the contents of the compound statement -- we must emit the
statement itself or we lose the scope (and thus end lifetimes at the wrong
point)
llvm-svn: 281797
This reverts commit r279003 as it breaks some of our buildbots (e.g.
clang-cmake-aarch64-quick, clang-x86_64-linux-selfhost-modules).
The error is in OpenMP/teams_distribute_simd_ast_print.cpp:
clang: /home/buildslave/buildslave/clang-cmake-aarch64-quick/llvm/include/llvm/ADT/DenseMap.h:527:
bool llvm::DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT>::LookupBucketFor(const LookupKeyT&, const BucketT*&) const
[with LookupKeyT = clang::Stmt*; DerivedT = llvm::DenseMap<clang::Stmt*, long unsigned int>;
KeyT = clang::Stmt*; ValueT = long unsigned int;
KeyInfoT = llvm::DenseMapInfo<clang::Stmt*>;
BucketT = llvm::detail::DenseMapPair<clang::Stmt*, long unsigned int>]:
Assertion `!KeyInfoT::isEqual(Val, EmptyKey) && !KeyInfoT::isEqual(Val, TombstoneKey) &&
"Empty/Tombstone value shouldn't be inserted into map!"' failed.
llvm-svn: 279045
This patch is to implement sema and parsing for 'teams distribute simd’ pragma.
This patch is originated by Carlo Bertolli.
Differential Revision: https://reviews.llvm.org/D23528
llvm-svn: 279003
Summary: This patch adds support for the use_device_ptr clause. It includes changes in SEMA that could not be tested without codegen, namely, the use of the first private logic and mappable expressions support.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: https://reviews.llvm.org/D22691
llvm-svn: 276977
This patch is to implement sema and parsing for 'target parallel for simd' pragma.
Differential Revision: http://reviews.llvm.org/D22096
llvm-svn: 275365
-fxray-instrument: enables XRay annotation of IR
-fxray-instruction-threshold: configures the threshold for function size (looking at IR instructions), and allow LLVM to decide whether to add the nop sleds later on in the process.
Also implements the related xray_always_instrument and xray_never_instrument function attributes.
Patch by Dean Michael Berris.
llvm-svn: 275330
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute simd'.
Differential Revision: http://reviews.llvm.org/D22007
llvm-svn: 274604
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute parallel for simd'.
Differential Revision: http://reviews.llvm.org/D21977
llvm-svn: 274530
With all MaterializeTemporaryExprs coming with a ExprWithCleanups, it's
easy to add correct lifetime.end marks into the right RunCleanupsScope.
Differential Revision: http://reviews.llvm.org/D20499
llvm-svn: 274385
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
[OpenMP] Initial implementation of parse and sema for composite pragma 'distribute parallel for'
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273884
http://reviews.llvm.org/D21564
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273705
Summary:
This patch fixes an issue detected when firstprivate variables are passed to an OpenMP outlined function vararg list. Currently they are not compatible with what the runtime library expects causing malfunction in some targets.
This patch fixes the issue by moving the casting logic already in place for offloading to the common code that creates the outline function and arguments and updates the regression tests accordingly.
Reviewers: hfinkel, arpith-jacob, carlo.bertolli, kkwli0, ABataev
Subscribers: cfe-commits, caomhin
Differential Revision: http://reviews.llvm.org/D21150
llvm-svn: 272900
Summary:
This patch is to add parsing and sema support for `target update` directive. Support for the `to` and `from` clauses will be added by a different patch. This patch also adds support for other clauses that are already implemented upstream and apply to `target update`, e.g. `device` and `if`.
This patch is based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D15944
llvm-svn: 270878
Underaligned atomic LValues require libcalls which MSVC doesn't have.
MSVC doesn't seem to consider such operations as requiring a barrier
anyway.
This fixes PR27843.
llvm-svn: 270576
For better performance and to unify code with offloading part we pass
scalar firstprivate values by value, instead of by reference. It will
remove some extra copying operations.
llvm-svn: 269751
schedule modifiers.
Runtime library expects some additional data in schedule argument for
loop-based directives, that have additional schedule modifiers
'monotonic|nonmonotonic'.
llvm-svn: 269035
Currently there is a problem with codegen of inlined directives inside
lambdas, it may cause a crash during codegen because of incorrect
capturing of variables. Patch fixes this problem.
llvm-svn: 267677
The taskloop construct specifies that the iterations of one or more associated loops will be executed in parallel using OpenMP tasks. The iterations are distributed across tasks created by the construct and scheduled to be executed.
The next code will be generated for the taskloop directive:
#pragma omp taskloop num_tasks(N) lastprivate(j)
for( i=0; i<N*GRAIN*STRIDE-1; i+=STRIDE ) {
int th = omp_get_thread_num();
#pragma omp atomic
counter++;
#pragma omp atomic
th_counter[th]++;
j = i;
}
Generated code:
task = __kmpc_omp_task_alloc(NULL,gtid,1,sizeof(struct
task),sizeof(struct shar),&task_entry);
psh = task->shareds;
psh->pth_counter = &th_counter;
psh->pcounter = &counter;
psh->pj = &j;
task->lb = 0;
task->ub = N*GRAIN*STRIDE-2;
task->st = STRIDE;
__kmpc_taskloop(
NULL, // location
gtid, // gtid
task, // task structure
1, // if clause value
&task->lb, // lower bound
&task->ub, // upper bound
STRIDE, // loop increment
0, // 1 if nogroup specified
2, // schedule type: 0-none, 1-grainsize, 2-num_tasks
N, // schedule value (ignored for type 0)
(void*)&__task_dup_entry // tasks duplication routine
);
llvm-svn: 267395
If loop control variable for simd-based directives is explicitly marked
as linear/lastprivate in clauses, codegen for such construct would
crash. Patch fixes this problem.
llvm-svn: 267101
Revert the two changes to thread CodeGenOptions into the TargetInfo allocation
and to fix the layering violation by moving CodeGenOptions into Basic.
Code Generation is arguably not particularly "basic". This addresses Richard's
post-commit review comments. This change purely does the mechanical revert and
will be followed up with an alternate approach to thread the desired information
into TargetInfo.
llvm-svn: 265806
This is a mechanical move of CodeGenOptions from libFrontend to libBasic. This
fixes the layering violation introduced earlier by threading CodeGenOptions into
TargetInfo. It should also fix the modules based self-hosting builds. NFC.
llvm-svn: 265702