With opaque pointers, `CreatePointerBitCastOrAddrSpaceCast` can be replaced with `CreateAddrSpaceCast`.
Replace or remove uses of `CreatePointerBitCastOrAddrSpaceCast`.
Opaque pointer cleanup effort.
Emission of `mustprogress` attribute previously occurred only within
`EmitFunctionBody`, after generating the function body. Other routines
for function body creation may lack the attribute, potentially leading
to suboptimal optimizations later in the pipeline. Attribute emission
is now anticipated prior to generating the function body.
Fixes: https://github.com/llvm/llvm-project/issues/69833.
This patch converts `ImplicitParamDecl::ImplicitParamKind` into a scoped enum at namespace scope, making it eligible for forward declaring. This is useful for `preferred_type` annotations on bit-fields.
This patch adds the CodeGen changes needed for enabling HIP parallel algorithm offload on AMDGPU targets. This change relaxes restrictions on what gets emitted on the device path, when compiling in `hipstdpar` mode:
1. Unless a function is explicitly marked `__host__`, it will get emitted, whereas before only `__device__` and `__global__` functions would be emitted;
2. Unsupported builtins are ignored as opposed to being marked as an error, as the decision on their validity is deferred to the `hipstdpar` specific code selection pass;
3. We add a `hipstdpar` specific pass to the opt pipeline, independent of optimisation level:
- When compiling for the host, iff the user requested it via the `--hipstdpar-interpose-alloc` flag, we add a pass which replaces canonical allocation / deallocation functions with accelerator aware equivalents.
A test to validate that unannotated functions get correctly emitted is added as well.
Reviewed by: yaxunl, efriedma
Differential Revision: https://reviews.llvm.org/D155850
Lambdas (closure types) are trivially equality-comparable iff they are
non-capturing, because non-capturing lambdas are convertible to function
pointers: if (lam1 == lam2) compiles, then lam1 and lam2 must have
the same type, and be always-equal, and be empty.
Hashing the sugared type instead of the canonical type meant that
a simple example like this would always fail under MSVC:
```
static auto l() {}
int main() {
auto a = l;
a();
}
```
`clang --target=x86_64-pc-windows-msvc -fno-exceptions
-fsanitize=function -g -O0 -fuse-ld=lld -o test.exe test.cc`
produces:
```
test.cc:4:3: runtime error: call to function l through pointer to incorrect function type 'void (*)()'
```
GCC 12 (https://gcc.gnu.org/PR101696) allows
__builtin_cpu_supports("x86-64") (and -v2 -v3 -v4).
This patch ports the feature.
* Add `FEATURE_X86_64_{BASELINE,V2,V3,V4}` to enum ProcessorFeatures,
but keep CPU_FEATURE_MAX unchanged to make
FeatureInfos/FeatureInfos_WithPLUS happy.
* Change validateCpuSupports to allow `x86-64{,-v2,-v3,-v4}`
* Change getCpuSupportsMask to return `std::array<uint32_t, 4>` where
`x86-64{,-v2,-v3,-v4}` set bits `FEATURE_X86_64_{BASELINE,V2,V3,V4}`.
* `target("x86-64")` and `cpu_dispatch(x86_64)` are invalid. Tested by commit 9de3b35ac9159d5bae6e6796cb91e4f877a07189
Close https://github.com/llvm/llvm-project/issues/59961
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D158811
GCC 12 (https://gcc.gnu.org/PR101696) allows `arch=x86-64`
`arch=x86-64-v2` `arch=x86-64-v3` `arch=x86-64-v4` in the
target_clones function attribute. This patch ports the feature.
* Set KeyFeature to `x86-64{,-v2,-v3,-v4}` in `Processors[]`, to be used
by X86TargetInfo::multiVersionSortPriority
* builtins: change `__cpu_features2` to an array like libgcc. Define
`FEATURE_X86_64_{BASELINE,V2,V3,V4}` and depended ISA feature bits.
* CGBuiltin.cpp: update EmitX86CpuSupports to handle `arch=x86-64*`.
Close https://github.com/llvm/llvm-project/issues/55830
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D158329
getUBSanFunctionTypeHash.
getUBSanFunctionTypeHash checks if a Type is a FunctionNoPrototype
by calling isa<FunctionNoProtoType>(). This does not work correctly when
the Type is wrapped in a sugar type such as an AttributedType. This
patch fixes this by using isFunctionNoProtoType() function which removes
sugar and returns the expected result.
The added test is a sanity check that the compiler no longer crashes
during compilation. It also compares the hash with and without the
function attribute for both FunctionNoProtoType and FunctionProtoType.
The hash remains the same for FunctionNoProtoType even with the addition
of an attribute.
rdar://113144087
Differential Revision: https://reviews.llvm.org/D157445
Following recent changes switching from xxh64 to xxh32 for better
hashing performance (e.g., D154813). These particular instances likely
have negligible time, but this change moves us toward removing xxHash64.
The type hash for -fsanitize=function will change, following a recent
change D148785 (not in any release yet) to the type hash scheme, though
sanitizers don't sign up for cross-version compatibility anyway.
The MicrosoftMangle instance is for internal symbols that need no
compatibility guarantee, as emphasized by the comment.
* Add `Address::withElementType()` as a replacement for
`CGBuilderTy::CreateElementBitCast`.
* Partial progress towards replacing `CreateElementBitCast`, as it no
longer does what its name suggests. Either replace its uses with
`Address::withElementType()`, or remove them if no longer needed.
* Remove unused parameter 'Name' of `CreateElementBitCast`
Reviewed By: barannikov88, nikic
Differential Revision: https://reviews.llvm.org/D153196
With D148785, -fsanitize=function no longer uses C++ RTTI objects and therefore
can support C. The rationale for reporting errors is C11 6.5.2.2p9:
> If the function is defined with a type that is not compatible with the type (of the expression) pointed to by the expression that denotes the called function, the behavior is undefined.
The mangled types approach we use does not exactly match the C type
compatibility (see `f(callee1)` below).
This is probably fine as the rules are unlikely leveraged in practice. In
addition, the call is warned by -Wincompatible-function-pointer-types-strict.
```
void callee0(int (*a)[]) {}
void callee1(int (*a)[1]) {}
void f(void (*fp)(int (*)[])) { fp(0); }
int main() {
int a[1];
f(callee0);
f(callee1); // compatible but flagged by -fsanitize=function, -fsanitize=kcfi, and -Wincompatible-function-pointer-types-strict
}
```
Skip indirect call sites of a function type without a prototype to avoid deal
with C11 6.5.2.2p6. -fsanitize=kcfi skips such calls as well.
Reviewed By: #sanitizers, vitalybuka
Differential Revision: https://reviews.llvm.org/D148827
Currently we use RTTI objects to check type compatibility. To support non-unique
RTTI objects, commit 5745eccef54ddd3caca278d1d292a88b2281528b added a
`checkTypeInfoEquality` string matching to the runtime.
The scheme is inefficient.
```
_Z1fv:
.long 846595819 # jmp
.long .L__llvm_rtti_proxy-_Z3funv
...
main:
...
# Load the second word (pointer to the RTTI object) and dereference it.
movslq 4(%rsi), %rax
movq (%rax,%rsi), %rdx
# Is it the desired typeinfo object?
leaq _ZTIFvvE(%rip), %rax
# If not, call __ubsan_handle_function_type_mismatch_v1, which may recover if checkTypeInfoEquality allows
cmpq %rax, %rdx
jne .LBB1_2
...
.section .data.rel.ro,"aw",@progbits
.p2align 3, 0x0
.L__llvm_rtti_proxy:
.quad _ZTIFvvE
```
Let's replace the indirect `_ZTI` pointer with a type hash similar to
`-fsanitize=kcfi`.
```
_Z1fv:
.long 3238382334
.long 2772461324 # type hash
main:
...
# Load the second word (callee type hash) and check whether it is expected
cmpl $-1522505972, -4(%rax)
# If not, fail: call __ubsan_handle_function_type_mismatch
jne .LBB2_2
```
The RTTI object derives its name from `clang::MangleContext::mangleCXXRTTI`,
which uses `mangleType`. `mangleTypeName` uses `mangleType` as well. So the
type compatibility change is high-fidelity.
Since we no longer need RTTI pointers in
`__ubsan::__ubsan_handle_function_type_mismatch_v1`, let's switch it back to
version 0, the original signature before
e215996a2932ed7c472f4e94dc4345b30fd0c373 (2019).
`__ubsan::__ubsan_handle_function_type_mismatch_abort` is not
recoverable, so we can revert some changes from
e215996a2932ed7c472f4e94dc4345b30fd0c373.
Reviewed By: samitolvanen
Differential Revision: https://reviews.llvm.org/D148785
This patch adds a new method setNoSanitizeMetadata() for Instruction, and use it in SanitizerMetadata and SanitizerCoverage.
Reviewed By: nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D150632
Currently clang emits error when both always_inline and target
attributes are on callee, but caller doesn't have some feature.
This patch makes clang emit error when caller cannot meet target feature
requirements from an always-inlined callee.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D143479
This is an alternative way of D139627 suggested by Craig. Creently only X86 backend uses this attribute. Let's just emit for X86 only.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D139701
This reverts commit e43924a75145d2f9e722f74b673145c3e62bfd07.
Reason: Patch broke the MSan buildbots. More information is available on
the original phabricator review: https://reviews.llvm.org/D127812
This change will allow users to call getNullability() without providing an ASTContext.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D140104
The global constant arguments could be in a different address space
than the first argument, so we have to add another overloaded argument.
This patch was originally made for CHERI LLVM (where globals can be in
address space 200), but it also appears to be useful for in-tree targets
as can be seen from the test diffs.
Differential Revision: https://reviews.llvm.org/D138722
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This patch fixes crashes related with how PatchableFunction selects the instruction to make patchable:
- Ensure PatchableFunction skips all instructions that don't generate actual machine instructions.
- Handle the case where the first MachineBasicBlock is empty
- Removed support for 16 bit x86 architectures.
Note: another issue remains related with PatchableFunction, in the lowering part.
See https://github.com/llvm/llvm-project/issues/59039
Differential Revision: https://reviews.llvm.org/D137642
We were crashing trying to convert a GlobalDecl from a
CXXConstructorDecl. Instead of trying to do that conversion, just pass
down the original GlobalDecl.
I think we could actually compute the correct constructor/destructor
kind from the context, given the way Microsoft mangling works, but it's
simpler to just pass through the correct constructor/destructor kind.
Differential Revision: https://reviews.llvm.org/D136776
The conditions for which Clang emits the `unsafe-fp-math` function
attribute has been modified as part of
`84a9ec2ff1ee97fd7e8ed988f5e7b197aab84a7`.
In the backend code generators `"unsafe-fp-math"="true"` enable floating
point contraction for the whole function.
The intent of the change in `84a9ec2ff1ee97fd7e8ed988f5e7b197aab84a7`
was to prevent backend code generators performing contractions when that
is not expected.
However the change is inaccurate and incomplete because it allows
`unsafe-fp-math` to be set also when only in-statement contraction is
allowed.
Consider the following example
```
float foo(float a, float b, float c) {
float tmp = a * b;
return tmp + c;
}
```
and compile it with the command line
```
clang -fno-math-errno -funsafe-math-optimizations -ffp-contract=on \
-O2 -mavx512f -S -o -
```
The resulting assembly has a `vfmadd213ss` instruction which corresponds
to a fused multiply-add. From the user perspective there shouldn't be
any contraction because the multiplication and the addition are not in
the same statement.
The optimized IR is:
```
define float @test(float noundef %a, float noundef %b, float noundef %c) #0 {
%mul = fmul reassoc nsz arcp afn float %b, %a
%add = fadd reassoc nsz arcp afn float %mul, %c
ret float %add
}
attributes #0 = {
[...]
"no-signed-zeros-fp-math"="true"
"no-trapping-math"="true"
[...]
"unsafe-fp-math"="true"
}
```
The `"unsafe-fp-math"="true"` function attribute allows the backend code
generator to perform `(fadd (fmul a, b), c) -> (fmadd a, b, c)`.
In the current IR representation there is no way to determine the
statement boundaries from the original source code.
Because of this for in-statement only contraction the generated IR
doesn't have instructions with the `contract` fast-math flag and
`llvm.fmuladd` is being used to represent contractions opportunities
that occur within a single statement.
Therefore `"unsafe-fp-math"="true"` can only be emitted when contraction
across statements is allowed.
Moreover the change in `84a9ec2ff1ee97fd7e8ed988f5e7b197aab84a7` doesn't
take into account that the floating point math function attributes can
be refined during IR code generation of a function to handle the cases
where the floating point math options are modified within a compound
statement via pragmas (see `CGFPOptionsRAII`).
For consistency `unsafe-fp-math` needs to be disabled if the contraction
mode for any scope/operation is not `fast`.
Similarly for consistency reason the initialization of `UnsafeFPMath` of
in `TargetOptions` for the backend code generation should take into
account the contraction mode as well.
Reviewed By: zahiraam
Differential Revision: https://reviews.llvm.org/D136786
Avoid __builtin_assume_aligned crash when the 1st arg is array type (or
string literal).
Fixes Issue #57169
Differential Revision: https://reviews.llvm.org/D133202
Semantic parameters aren't passed as actual parameters, instead they are
populated from intrinsics which are generally lowered to reads from
dedicated hardware registers.
This change modifies clang CodeGen to emit the intrinsic calls and
populate the parameter's LValue with the result of the intrinsic call
for SV_GroupIndex.
The result of this is to make the actual passed argument ignored, which
will make it easy to clean up later in an IR pass.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D131203
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c95494ff05be2a613129110c9bcf17f6c13 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
In D130807 we added the `skipprofile` attribute. This commit
changes the format so we can either `forbid` or `skip` profiling
functions by adding the `noprofile` or `skipprofile` attributes,
respectively. The behavior of the original format remains
unchanged.
Also, add the `skipprofile` attribute when using
`-fprofile-function-groups`.
This was originally landed as https://reviews.llvm.org/D130808 but was
reverted due to a Windows test failure.
Differential Revision: https://reviews.llvm.org/D131195