Part one of merging #132486. Add support for representing volatility in
the type system for reference, box, and class types. Don't do anything
with volatile just yet, only support and test their representation and
utility functions.
The naming convention is a little goofy - `fir::isa_volatile_type` and
`fir::updateTypeWithVolatility` use different capitalization, but I put
them near similar functions and tried to match the surrounding
conventions and [the
docs](https://github.com/llvm/llvm-project/blob/main/flang/docs/C%2B%2Bstyle.md#naming)
best I could.
The test is checking output from MLIR debug prints. MLIR passes can be
executed in parallel, for example a pass on func.func might schedule
different func.func operations in different threads. This led to
intermittent test failures where debug output from different threads
became mixed up.
Fix by disabling mlir multithreading for this test.
Delete duplicated creation of hlfir.declare op of do concurrent
induction variables when inside cuf kernel directive.
Obtain the correct hlfir.declare op generated from bindSymbol, and add
it to ivValues.
I am having problems building Fortran runtime for CUDA
after #134164. I need more time to investigate it,
but in the meantime including variant.h (or any header
that eventually includes a libcudacxx header) resolves
the issue.
Allocatable or pointer module variables with the CUDA managed attribute
are defined with a double descriptor. One on the host and one on the
device. Only the data pointed to by the descriptor will be allocated in
managed memory.
Allow the registration of any allocatable or pointer module variables
like device or constant.
Implement extended intrinsic PUTENV, both function and subroutine forms.
Add PUTENV documentation to flang/docs/Intrinsics.md. Add functional and
semantic unit tests.
No longer require -fopenmp or -fopenacc with -E, unless specific version
number options are also required for predefined macros. This means that
most source can be preprocessed with -E and then later compiled with
-fopenmp, -fopenacc, or neither.
This means that OpenMP conditional compilation lines (!$) are also
passed through to -E output. The tricky part of this patch was dealing
with the fact that those conditional lines can also contain regular
Fortran line continuation, and that now has to be deferred when !$ lines
are interspersed.
The preprocessor can perform macro replacement within identifiers when
they are split up with Fortran line continuation, but is failing to do
macro replacement on a continued identifier when none of its parts are
replaced.
The optional second argument to IEEE_SUPPORT_FLAG (and related functions
from the intrinsic IEEE_ARITHMETIC module) is needed only for its type,
not its value. Restrictions on local objects as arguments to function
references in specification expressions shouldn't apply to it.
Define a new attribute for dummy data object characteristics to
distinguish such arguments, set it for the appropriate intrinsic
function references, and test it during specification expression
validation.
Fortran::runtime::Descriptor::BytesFor() only works for Fortran
intrinsic types for which a C++ type counterpart exists, so it crashes
on some types that are legitimate Fortran types like REAL(2). Move some
logic from Evaluate into a new header in flang/Common, then use it to
avoid this needless dependence on C++.
A function or subroutine can allow an object of the same name to appear
in its scope, so long as the name is not used. This is similar to the
case of a name being imported from multiple distinct modules, and
implemented by the same representation.
It's not clear whether this is conforming behavior or a common
extension.
Add function and subroutine forms of FSEEK and FTELL as intrinsic
procedures. Accept common aliases from legacy compilers as well.
A separate patch to llvm-test-suite will enable tests for these
procedures once this patch has merged.
Depends on https://github.com/llvm/llvm-project/pull/132423; CI builds
will likely fail until that patch is merged and this PR is rebased.
Follow up to #134170.
We should be using the LLVM intrinsics instead of plain fir.calls when
we can. Existing code creates a declaration for the llvm intrinsic and
a regular fir.call, which makes it hard for consumers of the IR to find
all the intrinsic calls.
This patch updates flang to follow clang's behavior when processing the
`-mcode-object-version` option.
It is now used to populate an LLVM module flag called
`amdhsa_code_object_version` expected by the backend and also updates
the driver to add the `--amdhsa-code-object-version` option to the
frontend invocation for device compilation of AMDGPU targets.
Follow-up to #132003, in particular, see
https://github.com/llvm/llvm-project/pull/132003#issuecomment-2739701936.
This PR extends reduction support for `loop` directives. Consider the
following scenario:
```fortran
subroutine bar
implicit none
integer :: x, i
!$omp teams loop reduction(+: x)
DO i = 1, 5
call foo()
END DO
end subroutine
```
Note the following:
* According to the spec, the `reduction` clause will be attached to
`loop` during earlier stages in the compiler.
* Additionally, `loop` cannot be mapped to `distribute parallel for` due
to the call to a foreign function inside the loop's body.
* Therefore, `loop` must be mapped to `distribute`.
* However, `distribute` does not have `reduction` clauses.
* As a result, we have to move the `reduction`s from the `loop` to its
parent `teams` directive, which is what is done by this PR.
This PR implements the nonstandard intrinsic time.
In addition to running the unit tests, I also double checked that the
example code works by manually compiling and running it.
This PR adds the intrinsic `unlink` to flang.
## Test plan
- Added two codegen unit tests and ensured flang-check continues to
pass.
- Manually compiled and ran the example from the documentation.
The string used for intrinsic was not the correct one
"llvm.nvvm.match.any.sync.i32p". There was an extra `p` at the end.
Use the NVVM operation instead so we don't duplicate it.
Flang uses `fir.call <llvm intrinsic>` in a few places. This means
consumers of the IR need to strcmp every fir.call if they want to find a
particular LLVM intrinsic.
Emit LLVM memcpy intrinsics instead.
This PR is to improve the driver code to build `flang-rt` path by
re-using the logic and code of `compiler-rt`.
1. Moved `addFortranRuntimeLibraryPath` and `addFortranRuntimeLibs` to
`ToolChain.h` and made them virtual so that they can be overridden if
customization is needed. The current implementation of those two
procedures is moved to `ToolChain.cpp` as the base implementation to
default to.
2. Both AIX and PPCLinux now override `addFortranRuntimeLibs`.
The overriding function of `addFortranRuntimeLibs` for both AIX and
PPCLinux calls `getCompilerRTArgString` => `getCompilerRT` =>
`buildCompilerRTBasename` to get the path to `flang-rt`. This code
handles `LLVM_ENABLE_PER_TARGET_RUNTIME_DIR` setting. As shown in
`PPCLinux.cpp`, `FT_static` is the default. If not found, it will search
and build for `FT_shared`. To differentiate `flang-rt` from `clang-rt`,
a boolean flag `IsFortran` is passed to the chain of functions in order
to reach `buildCompilerRTBasename`.
This patch updates Flang lowering and kernel flags identification in
MLIR so that loop bounds on `target teams loop` constructs are evaluated
on the host, making the trip count available to the corresponding
`__tgt_target_kernel` call emitted for the target region.
This is necessary in order to properly execute these constructs as
`target teams distribute parallel do`.
Co-authored-by: Kareem Ergawy <kareem.ergawy@amd.com>
Consider:
```
function foo()
!$omp declare target(foo) ! This `foo` was a function-result symbol
...
end
```
When resolving symbols, for this case use the symbol corresponding to
the function instead of the symbol corresponding to the function result.
Currently, this will result in an error:
```
error: A variable that appears in a DECLARE TARGET directive must be
declared in the scope of a module or have the SAVE attribute, either
explicitly or implicitly
```
This patch introduces the `vmem-to-lds-load-insts` target feature, which
can be used to enable builtins `__builtin_amdgcn_global_load_lds` and
`__builtin_amdgcn_raw_ptr_buffer_load_lds` on platforms which have this
feature.
This feature is only available on gfx9/10.
A limitation of using a common target feature for both builtins is that
we could have made `__builtin_amdgcn_raw_ptr_buffer_load_lds` available
on gfx6,7,8.
Like other target statements, the statement associated with the label in
a legacy ASSIGN statement could be inside a construct. Constructs
containing such a target must therefore be marked as unstructured,
fairly similar to how targets are processed in `markBranchTarget`.
Hi,
This patch implements support for the following directives :
- `!DIR$ NOUNROLL_AND_JAM` to disable unrolling and jamming on a DO
LOOP.
- `!DIR$ NOUNROLL` to disable unrolling on a DO LOOP.
- `!DIR$ NOVECTOR` to disable vectorization on a DO LOOP.
This PR starts the effort to upstream AMD's internal implementation of
`do concurrent` to OpenMP mapping. This replaces #77285 since we
extended this WIP quite a bit on our fork over the past year.
An important part of this PR is a document that describes the current
status downstream, the upstreaming status, and next steps to make this
pass much more useful.
In addition to this document, this PR also contains the skeleton of the
pass (no useful transformations are done yet) and some testing for the
added command line options.
This looks like a huge PR but a lot of the added stuff is documentation.
It is also worth noting that the downstream pass has been validated on
https://github.com/BerkeleyLab/fiats. For the CPU mapping, this achived
performance speed-ups that match pure OpenMP, for GPU mapping we are
still working on extending our support for implicit memory mapping and
locality specifiers.
PR stack:
- https://github.com/llvm/llvm-project/pull/126026 (this PR)
- https://github.com/llvm/llvm-project/pull/127595
- https://github.com/llvm/llvm-project/pull/127633
- https://github.com/llvm/llvm-project/pull/127634
- https://github.com/llvm/llvm-project/pull/127635
Add the implementation of the `PERROR(STRING) ` intrinsic from the GNU
Extension to prints on the stderr a newline-terminated error message
corresponding to the last system error prefixed by `STRING`.
(https://gcc.gnu.org/onlinedocs/gfortran/PERROR.html)
During the transition from debug intrinsics to debug records, we used
several different command line options to customise handling: the
printing of debug records to bitcode and textual could be independent of
how the debug-info was represented inside a module, whether the
autoupgrader ran could be customised. This was all valuable during
development, but now that totally removing debug intrinsics is coming
up, this patch removes those options in favour of a single flag
(experimental-debuginfo-iterators), which enables autoupgrade, in-memory
debug records, and debug record printing to bitcode and textual IR.
We need to do this ahead of removing the
experimental-debuginfo-iterators flag, to reduce the amount of
test-juggling that happens at that time.
There are quite a number of weird test behaviours related to this --
some of which I simply delete in this commit. Things like
print-non-instruction-debug-info.ll , the test suite now checks for
debug records in all tests, and we don't want to check we can print as
intrinsics. Or the update_test_checks tests -- these are duplicated with
write-experimental-debuginfo=false to ensure file writing for intrinsics
is correct, but that's something we're imminently going to delete.
A short survey of curious test changes:
* free-intrinsics.ll: we don't need to test that debug-info is a zero
cost intrinsic, because we won't be using intrinsics in the future.
* undef-dbg-val.ll: apparently we pinned this to non-RemoveDIs in-memory
mode while we sorted something out; it works now either way.
* salvage-cast-debug-info.ll: was testing intrinsics-in-memory get
salvaged, isn't necessary now
* localize-constexpr-debuginfo.ll: was producing "dead metadata"
intrinsics for optimised-out variable values, dbg-records takes the
(correct) representation of poison/undef as an operand. Looks like we
didn't update this in the past to avoid spurious test differences.
* Transforms/Scalarizer/dbginfo.ll: this test was explicitly testing
that debug-info affected codegen, and we deferred updating the tests
until now. This is just one of those silent gnochange issues that get
fixed by RemoveDIs.
Finally: I've added a bitcode test, dbg-intrinsics-autoupgrade.ll.bc,
that checks we can autoupgrade debug intrinsics that are in bitcode into
the new debug records.