https://github.com/llvm/llvm-project/pull/79940 put calls to
recomputeLiveIns into
a loop, to repeatedly call the function until the computation converges.
However,
this repeats a lot of code. This changes moves the loop into a function
to simplify
the handling.
Note that this changes the order in which recomputeLiveIns is called.
For example,
```
bool anyChange = false;
do {
anyChange = recomputeLiveIns(*ExitMBB) || recomputeLiveIns(*LoopMBB);
} while (anyChange);
```
only begins to recompute the live-ins for LoopMBB after the computation
for ExitMBB
has converged. With this change, all basic blocks have a recomputation
of the live-ins
for each loop iteration. This can result in less or more calls,
depending on the
situation.
This is a fix for the regression seen in
https://github.com/llvm/llvm-project/pull/79498
> Currently, the way that recomputeLiveIns works is that it will
recompute the livein registers for that MachineBasicBlock but it matters
what order you call recomputeLiveIn which can result in incorrect
register allocations down the line.
Now we do not recompute the entire CFG but we do ensure that the newly
added MBB do reach convergence.
Currently, the way that recomputeLiveIns works is that it will recompute
the livein registers for that MachineBasicBlock but it matters what
order you call recomputeLiveIn which can result in incorrect register
allocations down the line.
This PR fixes that by simply recomputing the liveins for the entire CFG
until convergence is achieved. This makes it harder to introduce subtle
bugs which alter liveness.
When merging blocks, if the previous block has no any branch instruction
and has one successor, the successor may be SEH landing pad and the
block will always raise exception and nerver fall through to next block.
We can not merge them in such case. isSuccessor should be used to
confirm it can fall through to next block.
When removing an empty machine basic block, all of its successors should
be inherited by its fall through MBB. This keeps CFG as only have one
entry which is required by LiveDebugValues.
Reland #77441 as LiveDebugValues test.
`MergePotentialElts::operator<` asserts that the two elements being
compared are not equal. However, sorting functions are allowed to invoke
the comparison function with equal arguments (though they usually don't
for efficiency reasons).
There is an existing special-case that disables the assert if
_GLIBCXX_DEBUG is used, which may invoke the comparator with equal args
to verify strict weak ordering. I believe libc++ also has strict weak
ordering checks under some options nowadays.
Recently, #71312 was reported, where a change to glibc's qsort_r
implementation can also result in comparison between equal elements.
From what I understood, this is an inefficiency that will be fixed on
the glibc side as well, but I think at this point we should just remove
this assertion.
Fixes https://github.com/llvm/llvm-project/issues/71312.
This reverts commit db6a979ae82410e42430e47afa488936ba8e3025.
Reland D102817 without any change. The previous revert was a mistake.
Differential Revision: https://reviews.llvm.org/D102817
Improve and enable folding of conditional branches with tail calls.
1. Make it so that conditional tail calls can be emitted even when
there are multiple predecessors.
2. Don't guard the transformation behind -Os. The rationale for
guarding it was static-prediction can be affected by whether the
branch is forward of backward. This is no longer true for almost any
X86 cpus (anything newer than `SnB`) so is no longer a meaningful
concern.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D140931
Improve and enable folding of conditional branches with tail calls.
1. Make it so that conditional tail calls can be emitted even when
there are multiple predecessors.
2. Don't guard the transformation behind -Os. The rationale for
guarding it was static-prediction can be affected by whether the
branch is forward of backward. This is no longer true for almost any
X86 cpus (anything newer than `SnB`) so is no longer a meaningful
concern.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D140931
This patch is the Part-2 (BE LLVM) implementation of HW Exception handling.
Part-1 (FE Clang) was committed in 797ad701522988e212495285dade8efac41a24d4.
This new feature adds the support of Hardware Exception for Microsoft Windows
SEH (Structured Exception Handling).
Compiler options:
For clang-cl.exe, the option is -EHa, the same as MSVC.
For clang.exe, the extra option is -fasync-exceptions,
plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual.
NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change.
The rules for C code:
For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow three rules:
First, no exception can move in or out of _try region., i.e., no "potential faulty
instruction can be moved across _try boundary.
Second, the order of exceptions for instructions 'directly' under a _try must be preserved
(not applied to those in callees).
Finally, global states (local/global/heap variables) that can be read outside of _try region
must be updated in memory (not just in register) before the subsequent exception occurs.
The impact to C++ code:
Although SEH is a feature for C code, -EHa does have a profound effect on C++
side. When a C++ function (in the same compilation unit with option -EHa ) is
called by a SEH C function, a hardware exception occurs in C++ code can also
be handled properly by an upstream SEH _try-handler or a C++ catch(...).
As such, when that happens in the middle of an object's life scope, the dtor
must be invoked the same way as C++ Synchronous Exception during unwinding process.
Design:
A natural way to achieve the rules above in LLVM today is to allow an EH edge
added on memory/computation instruction (previous iload/istore idea) so that
exception path is modeled in Flow graph preciously. However, tracking every
single memory instruction and potential faulty instruction can create many
Invokes, complicate flow graph and possibly result in negative performance
impact for downstream optimization and code generation. Making all
optimizations be aware of the new semantic is also substantial.
This design does not intend to model exception path at instruction level.
Instead, the proposed design tracks and reports EH state at BLOCK-level to
reduce the complexity of flow graph and minimize the performance-impact on CPP
code under -EHa option.
One key element of this design is the ability to compute State number at
block-level. Our algorithm is based on the following rationales:
A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping
into a _try is not allowed. The single entry must start with a seh_try_begin()
invoke with a correct State number that is the initial state of the SEME.
Through control-flow, state number is propagated into all blocks. Side exits
marked by seh_try_end() will unwind to parent state based on existing SEHUnwindMap[].
Note side exits can ONLY jump into parent scopes (lower state number).
Thus, when a block succeeds various states from its predecessors, the lowest
State triumphs others. If some exits flow to unreachable, propagation on those
paths terminate, not affecting remaining blocks.
For CPP code, object lifetime region is usually a SEME as SEH _try.
However there is one rare exception: jumping into a lifetime that has Dtor but
has no Ctor is warned, but allowed:
Warning: jump bypasses variable with a non-trivial destructor
In that case, the region is actually a MEME (multiple entry multiple exits).
Our solution is to inject a eha_scope_begin() invoke in the side entry block to
ensure a correct State.
Implementation:
Part-1: Clang implementation (already in):
Please see commit 797ad701522988e212495285dade8efac41a24d4).
Part-2 : LLVM implementation described below.
For both C++ & C-code, the state of each block is computed at the same place in
BE (WinEHPreparing pass) where all other EH tables/maps are calculated.
In addition to _scope_begin & _scope_end, the computation of block state also
rely on the existing State tracking code (UnwindMap and InvokeStateMap).
For both C++ & C-code, the state of each block with potential trap instruction
is marked and reported in DAG Instruction Selection pass, the same place where
the state for -EHsc (synchronous exceptions) is done.
If the first instruction in a reported block scope can trap, a Nop is injected
before this instruction. This nop is needed to accommodate LLVM Windows EH
implementation, in which the address in IPToState table is offset by +1.
(note the purpose of that is to ensure the return address of a call is in the
same scope as the call address.
The handler for catch(...) for -EHa must handle HW exception. So it is
'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches
C++ exceptions).
Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW
exceptions can be passed through.
Original llvm-dev [RFC] discussions can be found in these two threads below:
https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.htmlhttps://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html
Differential Revision: https://reviews.llvm.org/D102817/new/
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20.
Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang,
and many LLVM tests, see comments on https://reviews.llvm.org/D121169
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.
I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D104477
Flipping the default value of SkipPseudoOp to true for those MIR APIs to favor maximum performance. Note that certain spots like branch folding and MIR if-conversion is are disabled for better counts quality. For these two optimizations, this is a no-diff change.
The counts quality with SPEC2017 before/after this change is unchanged.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D100332
This change fixes a couple places where the pseudo probe intrinsic blocks optimizations because they are not naturally removable. To unblock those optimizations, the blocking pseudo probes are moved out of the original blocks and tagged dangling, instead of allowing pseudo probes to be literally removed. The reason is that when the original block is removed, we won't be able to sample it. Instead of assigning it a zero weight, moving all its pseudo probes into another block and marking them dangling should allow the counts inference a chance to assign them a more reasonable weight. We have not seen counts quality degradation from our experiments.
The optimizations being unblocked are:
1. Removing conditional probes for if-converted branches. Conditional probes are tagged dangling when their homing branch arms are folded so that they will not be over-counted.
2. Unblocking jump threading from removing empty blocks. Pseudo probe prevents jump threading from removing logically empty blocks that only has one unconditional jump instructions.
3. Unblocking SimplifyCFG and MIR tail duplicate to thread empty blocks and blocks with redundant branch checks.
Since dangling probes are logically deleted, they should not consume any samples in LTO postLink. This can be achieved by setting their distribution factors to zero when dangled.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D97481
Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.
Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.
Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D79794
Let the codegen recognized the nomerge attribute and disable branch folding when the attribute is given
Differential Revision: https://reviews.llvm.org/D79537
CorrectExtraCFGEdges function.
The latter was a workaround for "Various pieces of code" leaving bogus
extra CFG edges in place. Where by "various" it meant only
IfConverter::MergeBlocks, which failed to clear all of the successors
of dead blocks it emptied out. This wouldn't matter a whole lot,
except that the dead blocks remained listed as predecessors of
still-useful blocks, inhibiting optimizations.
This fix slightly changed two thumb tests, because the correct CFG
successors allowed for the "diamond" if-conversion pattern to be
detected, when it could only use "simple" before.
Additionally, the removal of a now-redundant call to analyzeBranch
(with AllowModify=true) in BranchFolder::OptimizeFunction caused a
later check for an empty block in BranchFolder::OptimizeBlock to
fail. Correct this by moving the call to analyzeBranch in
OptimizeBlock higher.
Differential Revision: https://reviews.llvm.org/D79527
Summary:
These helpers are exercised by follow-up commits in this patch series,
which is all about removing CodeGen differences with vs. without debug
info in the AArch64 backend.
Reviewers: fhahn, aprantl, jpaquette, paquette
Subscribers: kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78260
This will address the issue: P8198 and P8199 (from D73534).
The methods was not handle bundles properly.
Differential Revision: https://reviews.llvm.org/D74904
Use the isCandidateForCallSiteEntry().
This should mostly be an NFC, but there are some parts ensuring
the moveCallSiteInfo() and copyCallSiteInfo() operate with call site
entry candidates (both Src and Dest should be the call site entry
candidates).
Differential Revision: https://reviews.llvm.org/D74122
Some code gen passes use MBFIWrapper to keep track of the frequency of new
blocks. This was not taken into account and could lead to incorrect frequencies
as MBFI silently returns zero frequency for unknown/new blocks.
Add a variant for MBFIWrapper in the PGSO query interface.
Depends on D73494.
Summary:
To avoid header file circular dependency issues in passing updated MBFI (in
MBFIWrapper) to the interface of profile guided size optimizations.
A prep step for (and split off of) D73381.
Reviewers: davidxl
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73494
These names have been changed from CamelCase to camelCase, but there were
many places (comments mostly) that still used the old names.
This change is NFC.
Summary:
Split off of D67120.
Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).
A second try after reverted D71072.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71149