This patch sets target specific calling convention for CUDA kernels in IR.
Patch by Greg Rodgers.
Revised and lit test added by Yaxun Liu.
Differential Revision: https://reviews.llvm.org/D44747
llvm-svn: 328795
ObjC and ObjC++ pass non-trivial structs in a way that is incompatible
with each other. For example:
typedef struct {
id f0;
__weak id f1;
} S;
// this code is compiled in c++.
extern "C" {
void foo(S s);
}
void caller() {
// the caller passes the parameter indirectly and destructs it.
foo(S());
}
// this function is compiled in c.
// 'a' is passed directly and is destructed in the callee.
void foo(S a) {
}
This patch fixes the incompatibility by passing and returning structs
with __strong or weak fields using the C ABI in C++ mode. __strong and
__weak fields in a struct do not cause the struct to be destructed in
the caller and __strong fields do not cause the struct to be passed
indirectly.
Also, this patch fixes the microsoft ABI bug mentioned here:
https://reviews.llvm.org/D41039?id=128767#inline-364710
rdar://problem/38887866
Differential Revision: https://reviews.llvm.org/D44908
llvm-svn: 328731
The patch adds nocf_check target independent attribute for disabling checks that were enabled by cf-protection flag.
The attribute can be appertained to functions and function pointers.
Attribute name follows GCC's similar attribute name.
Differential Revision: https://reviews.llvm.org/D41880
llvm-svn: 327768
Before this, we'd only emit lifetime.ends for these temps in
non-exceptional paths. This potentially made our stack larger than it
needed to be for any code that follows an EH cleanup. e.g. in
```
struct Foo { char cs[32]; };
void escape(void *);
struct Bar { ~Bar() { char cs[64]; escape(cs); } };
Foo getFoo();
void baz() {
Bar b;
getFoo();
}
```
baz() would require 96 bytes of stack, since the temporary from getFoo()
only had a lifetime.end on the non-exceptional path.
This also makes us keep hold of the Value* returned by
EmitLifetimeStart, so we don't have to remake it later.
llvm-svn: 326988
The indirect function argument is in alloca address space in LLVM IR. However,
during Clang codegen for C++, the address space of indirect function argument
should match its address space in the source code, i.e., default addr space, even
for indirect argument. This is because destructor of the indirect argument may
be called in the caller function, and address of the indirect argument may be
taken, in either case the indirect function argument is expected to be in default
addr space, not the alloca address space.
Therefore, the indirect function argument should be mapped to the temp var
casted to default address space. The caller will cast it to alloca addr space
when passing it to the callee. In the callee, the argument is also casted to the
default address space and used.
CallArg is refactored to facilitate this fix.
Differential Revision: https://reviews.llvm.org/D34367
llvm-svn: 326946
EmitLifetimeStart returns a non-null `size` pointer if it actually
emits a lifetime.start. Later in this function, we use `tempSize`'s
nullness to determine whether or not we should emit a lifetime.end.
llvm-svn: 326844
The patch fixes a number of bugs related to parameter indexing in
attributes:
* Parameter indices in some attributes (argument_with_type_tag,
pointer_with_type_tag, nonnull, ownership_takes, ownership_holds,
and ownership_returns) are specified in source as one-origin
including any C++ implicit this parameter, were stored as
zero-origin excluding any this parameter, and were erroneously
printing (-ast-print) and confusingly dumping (-ast-dump) as the
stored values.
* For alloc_size, the C++ implicit this parameter was not subtracted
correctly in Sema, leading to assert failures or to silent failures
of __builtin_object_size to compute a value.
* For argument_with_type_tag, pointer_with_type_tag, and
ownership_returns, the C++ implicit this parameter was not added
back to parameter indices in some diagnostics.
This patch fixes the above bugs and aims to prevent similar bugs in
the future by introducing careful mechanisms for handling parameter
indices in attributes. ParamIdx stores a parameter index and is
designed to hide the stored encoding while providing accessors that
require each use (such as printing) to make explicit the encoding that
is needed. Attribute declarations declare parameter index arguments
as [Variadic]ParamIdxArgument, which are exposed as ParamIdx[*]. This
patch rewrites all attribute arguments that are processed by
checkFunctionOrMethodParameterIndex in SemaDeclAttr.cpp to be declared
as [Variadic]ParamIdxArgument. The only exception is xray_log_args's
argument, which is encoded as a count not an index.
Differential Revision: https://reviews.llvm.org/D43248
llvm-svn: 326602
This makes it easier to debug crashes and hangs in block functions since
users can easily find out where the block is called from. The option
doesn't disable tail-calls from non-escaping blocks since non-escaping
blocks are not as hard to debug as escaping blocks.
rdar://problem/35758207
Differential Revision: https://reviews.llvm.org/D43841
llvm-svn: 326530
objc_msgSend_stret takes a hidden parameter for the returned structure's
address for the construction. When the function signature is rewritten
for the inalloca passing, the return type is no longer marked as
indirect but rather inalloca stret. This enhances the test for the
indirect return to check for that case as well. This fixes the
incorrect return classification for Windows x86.
llvm-svn: 326362
ARC mode.
Declaring __strong pointer fields in structs was not allowed in
Objective-C ARC until now because that would make the struct non-trivial
to default-initialize, copy/move, and destroy, which is not something C
was designed to do. This patch lifts that restriction.
Special functions for non-trivial C structs are synthesized that are
needed to default-initialize, copy/move, and destroy the structs and
manage the ownership of the objects the __strong pointer fields point
to. Non-trivial structs passed to functions are destructed in the callee
function.
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D41228
llvm-svn: 326307
Summary:
OpenCL 2.0 specification defines '-cl-uniform-work-group-size' option,
which requires that the global work-size be a multiple of the work-group
size specified to clEnqueueNDRangeKernel and allows optimizations that
are made possible by this restriction.
The patch introduces the support of this option.
To keep information about whether an OpenCL kernel has uniform work
group size or not, clang generates 'uniform-work-group-size' function
attribute for every kernel:
- "uniform-work-group-size"="true" for OpenCL 1.2 and lower,
- "uniform-work-group-size"="true" for OpenCL 2.0 and higher if
'-cl-uniform-work-group-size' option was specified,
- "uniform-work-group-size"="false" for OpenCL 2.0 and higher if no
'-cl-uniform-work-group-size' options was specified.
If the function is not an OpenCL kernel, 'uniform-work-group-size'
attribute isn't generated.
Patch by: krisb
Reviewers: yaxunl, Anastasia, b-sumner
Reviewed By: yaxunl, Anastasia
Subscribers: nhaehnle, yaxunl, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D43570
llvm-svn: 325771
As reported here: https://bugs.llvm.org/show_bug.cgi?id=36301
The issue is that the 'use' causes the plain declaration to emit
the attributes to LLVM-IR. However, if the definition added it
later, these would silently disappear.
This commit extracts that logic to its own function in CodeGenModule,
and has the attribute-applications done during 'definition' update
the attributes properly.
Differential Revision: https://reviews.llvm.org/D43095
llvm-svn: 324907
Summary:
Fixes PR36247, which is where WinEHPrepare replaces inline asm in
funclets with unreachable.
Make getBundlesForFunclet return by value to simplify some call sites.
Reviewers: smeenai, majnemer
Subscribers: eraman, cfe-commits
Differential Revision: https://reviews.llvm.org/D43033
llvm-svn: 324689
This change reduces the live range of the loaded function pointer,
resulting in a slight code size decrease (~10KB in clang), and also
improves the security of CFI for virtual calls by making it less
likely that the function pointer will be spilled, and ensuring that
it is not spilled across a function call boundary.
Fixes PR35353.
Differential Revision: https://reviews.llvm.org/D42725
llvm-svn: 324286
The 'trivial_abi' attribute can be applied to a C++ class, struct, or
union. It makes special functions of the annotated class (the destructor
and copy/move constructors) to be trivial for the purpose of calls and,
as a result, enables the annotated class or containing classes to be
passed or returned using the C ABI for the underlying type.
When a type that is considered trivial for the purpose of calls despite
having a non-trivial destructor (which happens only when the class type
or one of its subobjects is a 'trivial_abi' class) is passed to a
function, the callee is responsible for destroying the object.
For more background, see the discussions that took place on the mailing
list:
http://lists.llvm.org/pipermail/cfe-dev/2017-November/055955.htmlhttp://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20180101/thread.html#214043
rdar://problem/35204524
Differential Revision: https://reviews.llvm.org/D41039
llvm-svn: 324269
When a function taking transparent union is declared as taking one of
union members earlier in the translation unit, clang would hit an
"Invalid cast" assertion during EmitFunctionProlog. This case
corresponds to function f1 in test/CodeGen/transparent-union-redecl.c.
We decided to cast i32 to union because after merging function
declarations function parameter type becomes int,
CGFunctionInfo::ArgInfo type matches with ABIArgInfo type, so we decide
it is a trivial case. But these types should also be castable to
parameter declaration type which is not the case here.
Now the fix is in converting from ABIArgInfo type to VarDecl type and using
argument demotion when necessary.
Additional tests in Sema/transparent-union.c capture current behavior and make
sure there are no regressions.
rdar://problem/34949329
Reviewers: rjmccall, rafael
Reviewed By: rjmccall
Subscribers: aemerson, cfe-commits, kristof.beyls, ahatanak
Differential Revision: https://reviews.llvm.org/D41311
llvm-svn: 323156
As @rjmccall suggested in D40023, we can get rid of
ABIInfo::shouldSignExtUnsignedType (used to handle cases like the Mips calling
convention where 32-bit integers are always sign extended regardless of the
sign of the type) by adding a SignExt field to ABIArgInfo. In the common case,
this new field is set automatically by ABIArgInfo::getExtend based on the sign
of the type. For targets that want greater control, they can use
ABIArgInfo::getSignExtend or ABIArgInfo::getZeroExtend when necessary. This
change also cleans up logic in CGCall.cpp.
There is no functional change intended in this patch, and all tests pass
unchanged. As noted in D40023, Mips might want to sign-extend unsigned 32-bit
integer return types. A future patch might modify
MipsABIInfo::classifyReturnType to use MipsABIInfo::extendType.
Differential Revision: https://reviews.llvm.org/D41999
llvm-svn: 322396
When a function taking transparent union is declared as taking one of
union members earlier in the translation unit, clang would hit an
"Invalid cast" assertion during EmitFunctionProlog. This case
corresponds to function f1 in test/CodeGen/transparent-union-redecl.c.
We decided to cast i32 to union because after merging function
declarations function parameter type becomes int,
CGFunctionInfo::ArgInfo type matches with ABIArgInfo type, so we decide
it is a trivial case. But these types should also be castable to
parameter declaration type which is not the case here.
The fix is in checking for the trivial case if ABIArgInfo type matches with
parameter declaration type. It exposed inconsistency that we check
hasScalarEvaluationKind for different types in EmitParmDecl and
EmitFunctionProlog, and comment says they should match.
Additional tests in Sema/transparent-union.c capture current behavior and make
sure there are no regressions.
rdar://problem/34949329
Reviewers: rjmccall, rafael
Reviewed By: rjmccall
Subscribers: aemerson, cfe-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D41311
llvm-svn: 321296
Diagnose 'unreachable' UB when a noreturn function returns.
1. Insert a check at the end of functions marked noreturn.
2. A decl may be marked noreturn in the caller TU, but not marked in
the TU where it's defined. To diagnose this scenario, strip away the
noreturn attribute on the callee and insert check after calls to it.
Testing: check-clang, check-ubsan, check-ubsan-minimal, D40700
rdar://33660464
Differential Revision: https://reviews.llvm.org/D40698
llvm-svn: 321231
This adds a new command line option -mprefer-vector-width to specify a preferred vector width for the vectorizers. Valid values are 'none' and unsigned integers. The driver will check that it meets those constraints. Specific supported integers will be managed by the targets in the backend.
Clang will take the value and add it as a new function attribute during CodeGen.
This represents the alternate direction proposed by Sanjay in this RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-November/118734.html
The syntax here matches gcc, though gcc treats it as an x86 specific command line argument. gcc only allows values of 128, 256, and 512. I'm not having clang check any values.
Differential Revision: https://reviews.llvm.org/D40230
llvm-svn: 320419
CreateCoercedLoad/CreateCoercedStore assumes pointer argument of
memcpy is in addr space 0, which is not correct and causes invalid
bitcasts for triple amdgcn---amdgiz.
It is fixed by using alloca addr space instead.
Differential Revision: https://reviews.llvm.org/D40806
llvm-svn: 320000
Currently CodeGen is calling std::sort on the features vector in TargetOptions for every function, but I don't think CodeGen should be modifying TargetOptions.
Differential Revision: https://reviews.llvm.org/D40228
llvm-svn: 319195
Craig noticed that CodeGen wasn't properly ignoring the
values sent to the target attribute. This patch ignores
them.
This patch also sets the 'default' for this checking to
'supported', since only X86 has implemented the support
for checking valid CPU names and Feature Names.
One test was changed to i686, since it uses a lakemont,
which would otherwise be prohibited in x86_64.
Differential Revision: https://reviews.llvm.org/D39357
llvm-svn: 316783
This was done for CUDA functions in r261779, and for the same
reason this also needs to be done for OpenCL. An arbitrary
function could have a barrier() call in it, which in turn
requires the calling function to be convergent.
llvm-svn: 315094
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
This recommits r313722, which was reverted in r313725 because clang
couldn't build compiler-rt. It failed to build because there were
function declarations that were missing 'noescape'. That has been fixed
in r313929.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313945
This reverts commit r313722.
It looks like compiler-rt/lib/tsan/rtl/tsan_libdispatch_mac.cc cannot be
compiled because some of the functions declared in the file do not match
the ones in the SDK headers (which are annotated with 'noescape').
llvm-svn: 313725
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32210
llvm-svn: 313722
The attribute informs the compiler that the annotated pointer parameter
of a function cannot escape and enables IRGen to attach attribute
'nocapture' to parameters that are annotated with the attribute. That is
the only optimization that currently takes advantage of 'noescape', but
there are other optimizations that will be added later that improves
IRGen for ObjC blocks.
rdar://problem/19886775
Differential Revision: https://reviews.llvm.org/D32520
llvm-svn: 313720
In a future commit AMDGPU will start passing
aggregates directly to more functions, triggering
asserts in test/CodeGenOpenCL/addr-space-struct-arg.cl
llvm-svn: 309741
Convert attribute 'target' parsing from a 'pair' to a 'struct' to make further
improvements easier
The attribute 'target' parse function previously returned a pair. Convert
this to a 'pair' in order to add more functionality, and improve usability.
Differential Revision: https://reviews.llvm.org/D35574
llvm-svn: 308357
Move builtins from the x86 specific scope into the global
scope. Their use is still limited to x86_64 and aarch64 though.
This allows wine on aarch64 to properly handle variadic functions.
Differential Revision: https://reviews.llvm.org/D34475
llvm-svn: 308218
Clang assumes coerced function argument is in address space 0, which is not always true and results in invalid bitcasts.
This patch fixes failure in OpenCL conformance test api/get_kernel_arg_info with amdgcn---amdgizcl triple, where non-zero alloca address space is used.
Differential Revision: https://reviews.llvm.org/D34777
llvm-svn: 306721
The assertion was failing when a method of a parameterized class was
called and the types of the argument and parameter didn't match. To fix
the failure, move the assertion in EmitCallArg to its only caller
EmitCallArgs and require the argument and parameter types match only
when the method is not parameterized.
rdar://problem/32874473
Differential Revision: https://reviews.llvm.org/D34665
llvm-svn: 306494
This patch makes ubsan's nonnull return value diagnostics more precise,
which makes the diagnostics more useful when there are multiple return
statements in a function. Example:
1 |__attribute__((returns_nonnull)) char *foo() {
2 | if (...) {
3 | return expr_which_might_evaluate_to_null();
4 | } else {
5 | return another_expr_which_might_evaluate_to_null();
6 | }
7 |} // <- The current diagnostic always points here!
runtime error: Null returned from Line 7, Column 2!
With this patch, the diagnostic would point to either Line 3, Column 5
or Line 5, Column 5.
This is done by emitting source location metadata for each return
statement in a sanitized function. The runtime is passed a pointer to
the appropriate metadata so that it can prepare and deduplicate reports.
Compiler-rt patch (with more tests): https://reviews.llvm.org/D34298
Differential Revision: https://reviews.llvm.org/D34299
llvm-svn: 306163