This change changes the bufferization so that it utilizes the new TensorCopyInsertion pass. One-Shot Bufferize no longer calls the One-Shot Analysis. Instead, it relies on the TensorCopyInsertion pass to make the entire IR fully inplacable. The `bufferize` implementations of all ops are simplified; they no longer have to account for out-of-place bufferization decisions. These were already materialized in the IR in the form of `bufferization.alloc_tensor` ops during the TensorCopyInsertion pass.
Differential Revision: https://reviews.llvm.org/D127652
The function creates dim ops for each dynamic dimension of the raked tensor
argument and returns these as values.
Differential Revision: https://reviews.llvm.org/D127533
Before this fix, the bufferization implementation made the incorrect assumption that the values yielded from the "before" region must match with the values yielded from the "after" region.
Differential Revision: https://reviews.llvm.org/D125835
Instead of requiring the client to compute the "isSplat" bit,
compute it internally. This makes the logic more consistent
and defines away a lot of "elements.size()==1" in the clients.
This addresses Issue #55185
Differential Revision: https://reviews.llvm.org/D125447
This patch updates calls to AnalysisState::getBuffer() so that we return
early with a failure if the call does not succeed.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D125251
This patch augments the `tensor-bufferize` pass by adding a conversion
rule to translate ReshapeOp from the `tensor` dialect to the `memref`
dialect, in addition to adding a unit test to validate the translation.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D125031
Now that dialect constructors are generated in the .cpp file, we can
drop all of the dependent dialect includes from the .h file.
Differential Revision: https://reviews.llvm.org/D124298
It seems more natural than to have it as a static method of ExpandShapeOp.
Also fix a typo ("the the" -> "the").
Differential Revision: https://reviews.llvm.org/D124234
Insert a buffer copy unless the dims are guaranteed to be collapsible. In the verifier, accept collapses unless they are guaranteed to be non-collapsible.
Differential Revision: https://reviews.llvm.org/D123316
Infer a tighter MemRef type instead of always falling back to the most dynamic MemRef type. This is inefficient and caused op verification errors.
Differential Revision: https://reviews.llvm.org/D122649
This revision supports padding only a subset of the iteration dimensions via an additional padding-dimensions parameter. This control allows us to pad an operation in multiple steps. For example, one may want to pad only the output dimensions of a producer matmul fused into a consumer loop nest, before tiling and padding its reduction dimension.
Depends On D122309
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D122560
I am not sure about the meaning of Type in the name (was it meant be interpreted as Kind?), and given the importance and meaning of Type in the context of MLIR, its probably better to rename it. Given the comment in the source code, the suggestion in the GitHub issue and the final discussions in the review, this patch renames the OperandType to UnresolvedOperand.
Fixes https://github.com/llvm/llvm-project/issues/54446
Differential Revision: https://reviews.llvm.org/D122142
ExpandShapeOp builder cannot infer the result type since it doesn't know
how the dimension needs to be split. Remove this builder so that it
doesn't get used accidently. Also remove one potential path using it in
generic fusion.
Differential Revision: https://reviews.llvm.org/D122019
The current dialect registry allows for attaching delayed interfaces, that are added to attrs/dialects/ops/etc.
when the owning dialect gets loaded. This is clunky for quite a few reasons, e.g. each interface type has a
separate tracking structure, and is also quite limiting. This commit refactors this delayed mutation of
dialect constructs into a more general DialectExtension mechanism. This mechanism is essentially a registration
callback that is invoked when a set of dialects have been loaded. This allows for attaching interfaces directly
on the loaded constructs, and also allows for loading new dependent dialects. The latter of which is
extremely useful as it will now enable dependent dialects to only apply in the contexts in which they
are necessary. For example, a dialect dependency can now be conditional on if a user actually needs the
interface that relies on it.
Differential Revision: https://reviews.llvm.org/D120367
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
Such IR is rejected by default, but can be allowed with `allow-return-memref`. In preparation of future refactorings, do not deallocate such buffers.
One-Shot Analysis now gathers information about yielded tensors, so that we know during the actual bufferization whether a newly allocated buffer should be deallocated again. (Otherwise, it will leak. This will be addressed in a subsequent commit that also makes `allow-return-memref` a non-experimental flag.)
As a cleanup, `allow-return-memref` is now part of OneShotBufferizationOptions. (It was previously ignored by AlwaysCopyBufferizationState.) Moreover, AlwaysCopyBufferizationState now asserts that `create-deallocs` is deactivated to prevent surprising behavior.
Differential Revision: https://reviews.llvm.org/D121521
In this CL, update the function name of verifier according to the
behavior. If a verifier needs to access the region then it'll be updated
to `verifyRegions`.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D120373
A `tensor.cast` consumer can be folded with its producer. This is
beneficial only if the result of the tensor cast is more static than
the source. This patch adds a utility function to check that this is
the case, and adds a couple of canonicalizations patterns that fold an
operation with `tensor.cast` conusmers.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D120950
The Func has a large number of legacy dependencies carried over from the old
Standard dialect, which was pervasive and contained a large number of varied
operations. With the split of the standard dialect and its demise, a lot of lingering
dead dependencies have survived to the Func dialect. This commit removes a
large majority of then, greatly reducing the dependence surface area of the
Func dialect.
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
Add a pattern matcher for ExtractSliceOp when its source is a constant.
The matching heuristics can be governed by the control function since
generating a new constant is not always beneficial.
Differential Revision: https://reviews.llvm.org/D119605
This commit adds a pattern to wrap a tensor.pad op with
an scf.if op to separate the cases where we don't need padding
(all pad sizes are actually zeros) and where we indeed need
padding.
This pattern is meant to handle padding inside tiled loops.
Under such cases the padding sizes typically depend on the
loop induction variables. Splitting them would allow treating
perfect tiles and edge tiles separately.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D117018
The pad-slice swap pattern generates `scf.if` and `tensor.generate`
to guard against zero-sized slices if it cannot prove the slice is
always non-zero. This is safe but quite conservative. It can be
unnecessary for cases where we know by problem definition such cases
does not exist, even if with dynamic shaped ops or unknown tile/slice
sizes, e.g., convolution padding size = 1 with kernel dim size = 3.
So this commit introduces a control to the pattern to specify
whether to generate the if constructs to handle such cases better,
given that once the if constructs is materialized, it's very hard
to analyze and simplify.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D117017
Support ALLOW filters and DENY filters. This is needed for compatibility with existing code that specifies more complex op filters.
Differential Revision: https://reviews.llvm.org/D119820
This makes getAliasingOpResult symmetric to getAliasingOpOperand. The previous implementation was confusing for users and implemented in such a way only because there are currently no bufferizable ops that have multiple aliasing OpResults.
Differential Revision: https://reviews.llvm.org/D119259
They used to be classes with a virtual `run` function. This was inconvenient because post analysis steps are stored in BufferizationOptions. Because of this design choice, BufferizationOptions were not copyable.
Differential Revision: https://reviews.llvm.org/D119258
This is both more efficient and more ergonomic to use, as inverting a
bit vector is trivial while inverting a set is annoying.
Sadly this leaks into a bunch of APIs downstream, so adapt them as well.
This would be NFC, but there is an ordering dependency in MemRefOps's
computeMemRefRankReductionMask. This is now deterministic, previously it
was dependent on SmallDenseSet's unspecified iteration order.
Differential Revision: https://reviews.llvm.org/D119076
The Utils.cpp file in StandardOps essentially just contains utilities for interacting with arithmetic
operations, and at this point makes more sense as a utility file for the arithemtic dialect.
Differential Revision: https://reviews.llvm.org/D118280
This is part of the larger effort to split the standard dialect. This will also allow for pruning some
additional dependencies on Standard (done in a followup).
Differential Revision: https://reviews.llvm.org/D118202