This patch builds on top of #76971 and implements support for:
* __arm_new("zt0")
* __arm_in("zt0")
* __arm_out("zt0")
* __arm_inout("zt0")
* __arm_preserves("zt0")
This reverts commit fc0253264445be7f88d4cf0f9129dcb10c2fb84b.
This errors is disruptive to downstream projects
and should be reintroduced as a separate on-by-default
warning.
https://github.com/llvm/llvm-project/pull/78274
This adds a warning when applying the `pure` attribute along with the `const` attribute, or when applying the `pure` attribute to a function with a `void` return type (including constructors and destructors).
Fixes https://github.com/llvm/llvm-project/issues/77482
### Problem
```cpp
co_task<int> coro() {
int a = 1;
auto lamb = [a]() -> co_task<int> {
co_return a; // 'a' in the lambda object dies after the iniital_suspend in the lambda coroutine.
}();
co_return co_await lamb;
}
```
[use-after-free](https://godbolt.org/z/GWPEovWWc)
Lambda captures (even by value) are prone to use-after-free once the
lambda object dies. In the above example, the lambda object appears only
as a temporary in the call expression. It dies after the first
suspension (`initial_suspend`) in the lambda.
On resumption in `co_await lamb`, the lambda accesses `a` which is part
of the already-dead lambda object.
---
### Solution
This problem can be formulated by saying that the `this` parameter of
the lambda call operator is a lifetimebound parameter. The lambda object
argument should therefore live atleast as long as the return object.
That said, this requirement does not hold if the lambda does not have a
capture list. In principle, the coroutine frame still has a reference to
a dead lambda object, but it is easy to see that the object would not be
used in the lambda-coroutine body due to no capture list.
It is safe to use this pattern inside a`co_await` expression due to the
lifetime extension of temporaries. Example:
```cpp
co_task<int> coro() {
int a = 1;
int res = co_await [a]() -> co_task<int> { co_return a; }();
co_return res;
}
```
---
### Background
This came up in the discussion with seastar folks on
[RFC](https://discourse.llvm.org/t/rfc-lifetime-bound-check-for-parameters-of-coroutines/74253/19?u=usx95).
This is a fairly common pattern in continuation-style-passing (CSP)
async programming involving futures and continuations. Document ["Lambda
coroutine
fiasco"](https://github.com/scylladb/seastar/blob/master/doc/lambda-coroutine-fiasco.md)
by Seastar captures the problem.
This pattern makes the migration from CSP-style async programming to
coroutines very bugprone.
Fixes https://github.com/llvm/llvm-project/issues/76995
---------
Co-authored-by: Chuanqi Xu <yedeng.yd@linux.alibaba.com>
Previously, we skipped through template parameter scopes (until we hit a
declaration scope) prior to redeclaration lookup for declarators. For
template declarations, the meant that their template parameters would
not be found and shadowing would not be diagnosed. With these changes
applied, the following declarations are correctly diagnosed:
```cpp
template<typename T> void T(); // error: declaration of 'T' shadows template parameter
template<typename U> int U; // error: declaration of 'U' shadows template parameter
```
The reason for skipping past non-declaration & template parameter scopes
prior to lookup appears to have been because `GetTypeForDeclarator`
needed this adjusted scope... but it doesn't actually use this parameter
anymore.
The scope adjustment now happens prior to calling
`ActOnFunctionDeclarator`/`ActOnVariableDeclarator`/`ActOnTypedefDeclarator`
(just in case they depend on this behavior... I didn't check in depth).
This upstreams more of the Clang API Notes functionality that is
currently implemented in the Apple fork:
https://github.com/apple/llvm-project/tree/next/clang/lib/APINotes
This is the largest chunk of the API Notes functionality in the
upstreaming process. I will soon submit a follow-up patch to actually
enable usage of this functionality by having a Clang driver flag that
enables API Notes, along with tests.
Fix#67495, #72198
We build ill-formed AST nodes for invalid structured binding. For case
`int [_, b] = {0, 0};`, the `DecompositionDecl` is valid, and its
children `BindingDecl`s are valid but with a NULL type, this breaks
clang invariants in many places, and using these `BindingDecl`s can lead
to crashes. This patch fixes them by marking the DecompositionDecl and
its children invalid.
Emits an error for friend FunctionDecls that either:
* are not templates and have a requires clause
* are templates, and have a constrained parameter that depends on a
template parameter from an enclosing template
and are not a definition.
For a non-template friend function with a requires clause, if the
function is not templated then the original error message indicating
that such a function is disallowed is shown instead, as the function
will still be rejected if a definition is added.
The 'counted_by' attribute is used on flexible array members. The
argument for the attribute is the name of the field member holding the
count of elements in the flexible array. This information is used to
improve the results of the array bound sanitizer and the
'__builtin_dynamic_object_size' builtin. The 'count' field member must
be within the same non-anonymous, enclosing struct as the flexible array
member. For example:
```
struct bar;
struct foo {
int count;
struct inner {
struct {
int count; /* The 'count' referenced by 'counted_by' */
};
struct {
/* ... */
struct bar *array[] __attribute__((counted_by(count)));
};
} baz;
};
```
This example specifies that the flexible array member 'array' has the
number of elements allocated for it in 'count':
```
struct bar;
struct foo {
size_t count;
/* ... */
struct bar *array[] __attribute__((counted_by(count)));
};
```
This establishes a relationship between 'array' and 'count';
specifically that 'p->array' must have *at least* 'p->count' number of
elements available. It's the user's responsibility to ensure that this
relationship is maintained throughout changes to the structure.
In the following, the allocated array erroneously has fewer elements
than what's specified by 'p->count'. This would result in an
out-of-bounds access not not being detected:
```
struct foo *p;
void foo_alloc(size_t count) {
p = malloc(MAX(sizeof(struct foo),
offsetof(struct foo, array[0]) + count *
sizeof(struct bar *)));
p->count = count + 42;
}
```
The next example updates 'p->count', breaking the relationship
requirement that 'p->array' must have at least 'p->count' number of
elements available:
```
void use_foo(int index, int val) {
p->count += 42;
p->array[index] = val; /* The sanitizer can't properly check this access */
}
```
In this example, an update to 'p->count' maintains the relationship
requirement:
```
void use_foo(int index, int val) {
if (p->count == 0)
return;
--p->count;
p->array[index] = val;
}
```
With lldb build fix.
Original message:
EnumConstantDecl is allocated by the ASTContext allocator so the
destructor is never called.
This patch takes a similar approach to IntegerLiteral by using
APIntStorage to allocate large APSInts using the ASTContext allocator as
well.
The downside is that an additional heap allocation and copy of the data
needs to be made when calling getInitValue if the APSInt is large.
Fixes#78160.
EnumConstantDecl is allocated by the ASTContext allocator so the
destructor is never called.
This patch takes a similar approach to IntegerLiteral by using
APIntStorage to allocate large APSInts using the ASTContext allocator as
well.
The downside is that an additional heap allocation and copy of the data
needs to be made when calling getInitValue if the APSInt is large.
Fixes#78160.
This patch replaces the `__arm_new_za`, `__arm_shared_za` and
`__arm_preserves_za` attributes in favour of:
* `__arm_new("za")`
* `__arm_in("za")`
* `__arm_out("za")`
* `__arm_inout("za")`
* `__arm_preserves("za")`
As described in https://github.com/ARM-software/acle/pull/276.
One change is that `__arm_in/out/inout/preserves(S)` are all mutually
exclusive, whereas previously it was fine to write `__arm_shared_za
__arm_preserves_za`. This case is now represented with `__arm_in("za")`.
The current implementation uses the same LLVM attributes under the hood,
since `__arm_in/out/inout` are all variations of "shared ZA", so can use
the existing `aarch64_pstate_za_shared` attribute in LLVM.
#77941 will add support for the new "zt0" state as introduced
with SME2.
The 'counted_by' attribute is used on flexible array members. The
argument for the attribute is the name of the field member holding the
count of elements in the flexible array. This information is used to
improve the results of the array bound sanitizer and the
'__builtin_dynamic_object_size' builtin. The 'count' field member must
be within the same non-anonymous, enclosing struct as the flexible array
member. For example:
```
struct bar;
struct foo {
int count;
struct inner {
struct {
int count; /* The 'count' referenced by 'counted_by' */
};
struct {
/* ... */
struct bar *array[] __attribute__((counted_by(count)));
};
} baz;
};
```
This example specifies that the flexible array member 'array' has the
number of elements allocated for it in 'count':
```
struct bar;
struct foo {
size_t count;
/* ... */
struct bar *array[] __attribute__((counted_by(count)));
};
```
This establishes a relationship between 'array' and 'count';
specifically that 'p->array' must have *at least* 'p->count' number of
elements available. It's the user's responsibility to ensure that this
relationship is maintained throughout changes to the structure.
In the following, the allocated array erroneously has fewer elements
than what's specified by 'p->count'. This would result in an
out-of-bounds access not not being detected:
```
struct foo *p;
void foo_alloc(size_t count) {
p = malloc(MAX(sizeof(struct foo),
offsetof(struct foo, array[0]) + count *
sizeof(struct bar *)));
p->count = count + 42;
}
```
The next example updates 'p->count', breaking the relationship
requirement that 'p->array' must have at least 'p->count' number of
elements available:
```
void use_foo(int index, int val) {
p->count += 42;
p->array[index] = val; /* The sanitizer can't properly check this access */
}
```
In this example, an update to 'p->count' maintains the relationship
requirement:
```
void use_foo(int index, int val) {
if (p->count == 0)
return;
--p->count;
p->array[index] = val;
}
```
This reverts commit fefdef808c230c79dca2eb504490ad0f17a765a5.
Breaks check-clang, see
https://github.com/llvm/llvm-project/pull/76348#issuecomment-1886029515
Also revert follow-on "[Clang] Update 'counted_by' documentation"
This reverts commit 4a3fb9ce27dda17e97341f28005a28836c909cfc.
The 'counted_by' attribute is used on flexible array members. The
argument for the attribute is the name of the field member holding the
count of elements in the flexible array. This information is used to
improve the results of the array bound sanitizer and the
'__builtin_dynamic_object_size' builtin. The 'count' field member must
be within the same non-anonymous, enclosing struct as the flexible array
member. For example:
```
struct bar;
struct foo {
int count;
struct inner {
struct {
int count; /* The 'count' referenced by 'counted_by' */
};
struct {
/* ... */
struct bar *array[] __attribute__((counted_by(count)));
};
} baz;
};
```
This example specifies that the flexible array member 'array' has the
number of elements allocated for it in 'count':
```
struct bar;
struct foo {
size_t count;
/* ... */
struct bar *array[] __attribute__((counted_by(count)));
};
```
This establishes a relationship between 'array' and 'count';
specifically that 'p->array' must have *at least* 'p->count' number of
elements available. It's the user's responsibility to ensure that this
relationship is maintained throughout changes to the structure.
In the following, the allocated array erroneously has fewer elements
than what's specified by 'p->count'. This would result in an
out-of-bounds access not not being detected:
```
struct foo *p;
void foo_alloc(size_t count) {
p = malloc(MAX(sizeof(struct foo),
offsetof(struct foo, array[0]) + count *
sizeof(struct bar *)));
p->count = count + 42;
}
```
The next example updates 'p->count', breaking the relationship
requirement that 'p->array' must have at least 'p->count' number of
elements available:
```
void use_foo(int index, int val) {
p->count += 42;
p->array[index] = val; /* The sanitizer can't properly check this access */
}
```
In this example, an update to 'p->count' maintains the relationship
requirement:
```
void use_foo(int index, int val) {
if (p->count == 0)
return;
--p->count;
p->array[index] = val;
}
```
This reapplies f034044ad94d6f7ccec13d89f08acac257ed28bb after it was
reverted by 687396b5f4ba0713d103ebd172b308e92eb930cc due to a test
failure in clang-doc.
The test in question declares a partial specialization of a function
template, as well as an explicit specialization of the same function
template. Both declarations are now set as invalid, meaning neither is
emitted by clang-doc.
Since this is the sole test of function template specializations in
clang-doc, I presume the intent is for the partial specialization to
actually be the primary template. Doing so results in the expected
output.
This diagnoses unexpanded packs in the _unqualified-id_ of a function
template specialization's _declarator-id_. For example:
```cpp
template<typename... Ts>
struct A
{
template<typename U>
void f();
template<>
void f<Ts>(); // error: explicit specialization contains unexpanded parameter pack 'Ts'
};
```
I moved the handling of template-id's so it happens right after we
determine whether we are declaring a function template/function template
specialization so diagnostics are issued in lexical order.
Without function bodies, we cannot tell whether a function is a
coroutine or not.
The analysis of coroutine wrappers is not useful when this information
is not available.
We therefore now skip this analysis for skipped function bodies.
This fixes https://github.com/llvm/llvm-project/issues/64347.
The CTAD for an aggregate class is missing to handle the explicit type
conversion case, e.g. `TemplateFooClass(1, 2);`. Per C++ expr.type.conv
p1, the deduced type is the return type of the deduction guide selected
by the CTAD for the reminder.
In the deduction implementation
`DeduceTemplateSpecializationFromInitializer`, the parenthesized
express-list case relies on the `ParenListExpr` parameter (default is
nullptr), the AST `ParenListExpr` node is not built for all variant
initializer cases (`BuildCXXTypeConstructorExpr`, `BuildCXXNew` etc),
thus the deduction doesn't perform for these cases. This patch fixes it
by removing the `ParenListExpr` and using the `Inits` instead (which
also simplifies the interface and implementation).
There are many issues that popped up with the counted_by feature. The
patch #73730 has grown too large and approval is blocking Linux testing.
Includes reverts of:
commit 769bc11f684d ("[Clang] Implement the 'counted_by' attribute
(#68750)")
commit bc09ec696209 ("[CodeGen] Revamp counted_by calculations
(#70606)")
commit 1a09cfb2f35d ("[Clang] counted_by attr can apply only to C99
flexible array members (#72347)")
commit a76adfb992c6 ("[NFC][Clang] Refactor code to calculate flexible
array member size (#72790)")
commit d8447c78ab16 ("[Clang] Correct handling of negative and
out-of-bounds indices (#71877)")
Partial commit b31cd07de5b7 ("[Clang] Regenerate test checks (NFC)")
Closes#73168Closes#75173
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
This commit introduces support for the MSVC-specific C++11-style
attribute `[[msvc::constexpr]]`, which was introduced in MSVC 14.33.
The semantics of this attribute are enabled only under
MSVC compatibility (`-fms-compatibility-version`) 14.33 and higher.
Additionally, the default value of `_MSC_VER` has been raised to 1433.
The current implementation lacks support for:
- `[[msvc::constexpr]]` constructors (see #72149);
at the time of this implementation, such support would have required
an unreasonable number of changes in Clang.
- `[[msvc::constexpr]] return ::new` (constexpr placement new) from
non-std namespaces (see #74924).
Relevant to: #57696
These both do the same thing, but some profiling on a
Releast+Asserts build suggests isRVVSizelessBuiltinType() is the
more efficient version so lets keep that one.
If a template is defined via an external AST source, it won't have a
location. When we emit warnings about misusing such templates we
shouldn't emit a "template is declared here" warning with no location,
as that's just confusing.
Reviewers: llvm-beanz, erichkeane, AaronBallman
Reviewed By: erichkeane, AaronBallman
Pull Request: https://github.com/llvm/llvm-project/pull/71264
Due to d0d2ee0e4bbe915d649e983c12d37bcfcf58823c clang doesn't perform
qualified name lookup into the current instantiation when it has
dependent bases, because of that `getTypeName` call always returns null
for unknown specialization case. When there is a `typename` keyword,
`DependentNameType` is constructed instead of simply returning null.
This change attempts to do the same in case of `typename` absence.
Fixes https://github.com/llvm/llvm-project/issues/13826
Despite CWG2497 not being resolved, it is reasonable to expect the
following code to compile (and which is supported by other compilers)
```cpp
template<typename T> constexpr T f();
constexpr int g() { return f<int>(); } // #1
template<typename T> constexpr T f() { return 123; }
int k[g()];
// #2
```
To that end, we eagerly instantiate all referenced specializations of
constexpr functions when they are defined.
We maintain a map of (pattern, [instantiations]) independent of
`PendingInstantiations` to avoid having to iterate that list after each
function definition.
We should apply the same logic to constexpr variables, but I wanted to
keep the PR small.
Fixes#73232
This change implements parsing for HLSL's parameter modifier keywords
`in`, `out` and `inout`. Because HLSL doesn't support references or
pointers, these keywords are used to allow parameters to be passed in
and out of functions.
This change only implements the parsing and AST support. In the HLSL
ASTs we represent `out` and `inout` parameters as references, and we
implement the semantics of by-value passing during IR generation.
In HLSL parameters marked `out` and `inout` are ambiguous in function
declarations, and `in`, `out` and `inout` may be ambiguous at call
sites.
This means a function may be defined as `fn(in T)` and `fn(inout T)` or
`fn(out T)`, but not `fn(inout T)` and `fn(out T)`. If a funciton `fn`
is declared with `in` and `inout` or `out` arguments, the call will be
ambiguous the same as a C++ call would be ambiguous given declarations
`fn(T)` and `fn(T&)`.
Fixes#59849
This reverts commit 27e6e4a4d0e3296cebad8db577ec0469a286795e.
This patch is reverted due to regression. A testcase is:
`template <class T>
struct ptr {
~ptr() { static int x = 1;}
};
template <class T>
struct Abc : ptr<T> {
public:
Abc();
~Abc() {}
};
template
class Abc<int>;
`
Make trivial ctor/dtor implicitly host device functions so that they can
be used to initialize file-scope
device variables to match nvcc behavior.
Fixes: https://github.com/llvm/llvm-project/issues/72261
Fixes: SWDEV-432412
Close https://github.com/llvm/llvm-project/issues/71347
Previously I misread the concept of module purview. I thought if a
declaration attached to a unnamed module, it can't be part of the module
purview. But after the issue report, I recognized that module purview is
more of a concept about locations instead of semantics.
Concretely, the things in the language linkage after module declarations
can be exported.
This patch refactors `Module::isModulePurview()` and introduces some
possible code cleanups.
Fixes https://github.com/llvm/llvm-project/issues/58637.
Adds `isAlignas()` method on `AttributeCommonInfo` which accounts for
C++ `alignas` as well as C11 `_Alignas`.
The method is used to improve diagnostic in C when `_Alignas` is used in
C at the wrong location. This corrects the previously suggested move
of `_Alignas` past the declaration specifier, now warns attribute
`_Alignas` is ignored.
Based on https://reviews.llvm.org/D141177.
This patch introduces a new enumerator `Invalid = 0`, shifting other enumerators by +1. Contrary to how it might sound, this actually affirms status quo of how this enum is stored in `clang::Decl`:
```
/// If 0, we have not computed the linkage of this declaration.
/// Otherwise, it is the linkage + 1.
mutable unsigned CacheValidAndLinkage : 3;
```
This patch makes debuggers to not be mistaken about enumerator stored in this bit-field. It also converts `clang::Linkage` to a scoped enum.
During the recent refactoring (b120fe8d3288c4dca1b5427ca34839ce8833f71c) this enum was moved out of `RecordDecl`. During post-commit review it was found out that its association with `RecordDecl` should be expressed in the name.
This patch converts `LinkageSpecDecl::LanguageIDs` into scoped enum, and moves it to namespace scope, so that it can be forward-declared where required.
This patch moves ElaboratedTypeKeyword before `Type` definition so that the enum is complete where bit-field for it is declared. It also converts it to scoped enum and removes `ETK_` prefix.