for Objective-C protocols, including:
- Using the first declaration as the canonical declaration
- Using the definition as the primary DeclContext
- Making sure that all declarations have a pointer to the definition
data, and that we know which declaration is the definition
- Serialization support for redeclaration chains and for adding
definitions to already-serialized declarations.
However, note that we're not taking advantage of much of this code
yet, because we're still re-using ObjCProtocolDecls.
llvm-svn: 147410
visibility restrictions. This ensures that all declarations of the
same entity end up in the same redeclaration chain, even if some of
those declarations aren't visible. While this may seem unfortunate to
some---why can't two C modules have different functions named
'f'?---it's an acknowedgment that a module does not introduce a new
"namespace" of names.
As part of this, stop merging the 'module-private' bit from previous
declarations to later declarations, because we want each declaration
in a module to stand on its own because this can effect, for example,
submodule visibility.
Note that this notion of names that are invisible to normal name
lookup but are available for redeclaration lookups is how we should
implement friend declarations and extern declarations within local
function scopes. I'm not tackling that problem now.
llvm-svn: 146980
chains. The previous implementation relied heavily on the declaration
chain being stored as a (circular) linked list on disk, as it is in
memory. However, when deserializing from multiple modules, the
different chains could get mixed up, leading to broken declaration chains.
The new solution keeps track of the first and last declarations in the
chain for each module file. When we load a declaration, we search all
of the module files for redeclarations of that declaration, then
splice together all of the lists into a coherent whole (along with any
redeclarations that were actually parsed).
As a drive-by fix, (de-)serialize the redeclaration chains of
TypedefNameDecls, which had somehow gotten missed previously. Add a
test of this serialization.
This new scheme creates a redeclaration table that is fairly large in
the PCH file (on the order of 400k for Cocoa.h's 12MB PCH file). The
table is mmap'd in and searched via a binary search, but it's still
quite large. A future tweak will eliminate entries for declarations
that have no redeclarations anywhere, and should
drastically reduce the size of this table.
llvm-svn: 146841
Basically typo correction will try to offer a correction instead of looking into type dependent base classes.
I found this problem while parsing Microsoft ATL code with clang.
llvm-svn: 145772
unknown specialization, treat this the same way as if the name were
not found in the current instantiation. No actual functionality
change, since apparently nothing depends on this.
llvm-svn: 142862
synthesis. This new feature is currently placed under
-fobjc-default-synthesize-properties option
and is off by default pending further testing.
It will become the default feature soon.
// rdar://8843851
llvm-svn: 138913
This makes the code duplication of implicit special member handling even worse,
but the cleanup will have to come later. For now, this works.
Follow-up with tests for explicit defaulting and enabling the __has_feature
flag to come.
llvm-svn: 138821
, such as list of forward @class decls, in a DeclGroup
node. Deal with its consequence throught clang. This
is in preparation for more Sema work ahead. // rdar://8843851.
Feel free to reverse if it breaks something important
and I am unavailable.
llvm-svn: 138709
Change TypoCorrection to store a set of NamedDecls instead of a single
NamedDecl. Also add initial support for performing function overload
resolution to Sema::DiagnoseEmptyLookup.
llvm-svn: 136807
to the same declaration when correcting typos. This is done by
essentially sorting the corrections as they're added.
Original patch by Kaelyn Uhrain, but modified for style and correctness
by accounting for more than just the textual spelling.
This still is a bit of a WIP hack to make this deterministic. Kaelyn
(and myself) are working on a more principled solution going forward.
llvm-svn: 134038
up several places where we never expect to have NULL pointers to assert
early.
This fixes a valgrind error within CorrectTypo, but not the
non-determinism.
llvm-svn: 134032
vector<int>
to
std::vector<int>
Patch by Kaelyn Uhrain, with minor tweaks + PCH support from me. Fixes
PR5776/<rdar://problem/8652971>.
Thanks Kaelyn!
llvm-svn: 134007
conventions. I then discovered a typo in the using declaration bit in
LookupSpecialMember. This led to discovering [namespace.udecl]p15, which
clang implements incorrectly. Thus I've added a comment and implemented
the code consistently with the rest of clang - that is incorrectly.
And because I don't want to include tests of something incorrect, I've
ripped the test out.
llvm-svn: 133784
FunctionTemplateDecl. I'm not quite sure what else it could be, though,
and would appreciate some insight.
This ought to fix the broken builds
llvm-svn: 133600
lookup. Previously, it was breaking self-host, but it's been a week and
a half and I can't reproduce, so I need to see if it's still failing.
llvm-svn: 133581
I believe, upon, careful review, that this code causes us to incorrectly
handle exception specifications of copy assignment operators in C++03
mode. However, we currently do not seem to properly implement the subtle
distinction between copying of members and bases made by implicit copy
constructors and assignment operators in C++03 - namely that they are
limited in their overload selection - in all cases. As such, I feel that
committing this code is correct pending a careful review of our
implementation of these semantics.
llvm-svn: 132841
hasTrivialDefaultConstructor() really really means it now.
Also implement a fun standards bug regarding aggregates. Doug, if you'd
like, I can un-implement that bug if you think it is truly a defect.
The bug is that non-special-member constructors are never considered
user-provided, so the following is an aggregate:
struct foo {
foo(int);
};
It's kind of bad, but the solution isn't obvious - should
struct foo {
foo (int) = delete;
};
be an aggregate or not?
Lastly, add a missing initialization to FunctionDecl.
llvm-svn: 131101
provides proper support for. This was caught by
-Wundefined-reinterpret-cast, and I think a reasonable case for it to
warn on.
Also use is<...> instead of dyn_cast<...> when the result isn't needed.
This whole thing should probably switch to using UsuallyTinyPtrVector.
llvm-svn: 130707