Fix static analyzer concern about potential null value
dereference. findBackingIvar() dereferences Prop. PR
checks that Prop exists before calling the function.
Differential Revision: https://reviews.llvm.org/D157429
This diff extends D123345 by adding support for std::forward_like.
Test plan: ninja check-clang check-clang-tools check-llvm
Differential revision: https://reviews.llvm.org/D142430
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
This makes `ninja clang` work in the absence of llvm::Optional::value.
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This is a recommit of b822efc7404bf09ccfdc1ab7657475026966c3b2,
reverted in dc34d8df4c48b3a8f474360970cae8a58e6c84f0. The commit caused
fails because the test ast-print-fp-pragmas.c did not specify particular
target, and it failed on targets which do not support constrained
intrinsics. The original commit message is below.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
On some buildbots test `ast-print-fp-pragmas.c` fails, need to investigate it.
This reverts commit 0401fd12d4aa0553347fe34d666fb236d8719173.
This reverts commit b822efc7404bf09ccfdc1ab7657475026966c3b2.
AST does not have special nodes for pragmas. Instead a pragma modifies
some state variables of Sema, which in turn results in modified
attributes of AST nodes. This technique applies to floating point
operations as well. Every AST node that can depend on FP options keeps
current set of them.
This technique works well for options like exception behavior or fast
math options. They represent instructions to the compiler how to modify
code generation for the affected nodes. However treatment of FP control
modes has problems with this technique. Modifying FP control mode
(like rounding direction) usually requires operations on hardware, like
writing to control registers. It must be done prior to the first
operation that depends on the control mode. In particular, such
operations are required for implementation of `pragma STDC FENV_ROUND`,
compiler should set up necessary rounding direction at the beginning of
compound statement where the pragma occurs. As there is no representation
for pragmas in AST, the code generation becomes a complicated task in
this case.
To solve this issue FP options are kept inside CompoundStmt. Unlike to FP
options in expressions, these does not affect any operation on FP values,
but only inform the codegen about the FP options that act in the body of
the statement. As all pragmas that modify FP environment may occurs only
at the start of compound statement or at global level, such solution
works for all relevant pragmas. The options are kept as a difference
from the options in the enclosing compound statement or default options,
it helps codegen to set only changed control modes.
Differential Revision: https://reviews.llvm.org/D123952
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc3090109643af8d2da9822d0f99c84742b9c877,
a571f82a50416b767fd3cce0fb5027bb5dfec58c,
64c045e25b8471bbb572bd29159c294a82a86a2, and
de6ddaeef3aaa8a9ae3663c12cdb57d9afc0f906,
and reverts aa643f455a5362de7189eac630050d2c8aefe8f2.
This change also includes a workaround for users using libc++ 3.1 and
earlier (!!), as apparently happens on AIX, where std::move sometimes
returns by value.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Fixup D123950 to address revert of D123345"
This reverts commit aa643f455a5362de7189eac630050d2c8aefe8f2.
This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc3090109643af8d2da9822d0f99c84742b9c877,
a571f82a50416b767fd3cce0fb5027bb5dfec58c, and
64c045e25b8471bbb572bd29159c294a82a86a25
which were reverted in
e75d8b70370435b0ad10388afba0df45fcf9bfcc
due to a crasher bug where CodeGen would emit a builtin glvalue as an
rvalue if it constant-folds.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Extend support for std::move etc to also cover std::as_const and"
Revert "Update test to handle opaque pointers flag flip."
It crashes on libcxx tests https://lab.llvm.org/buildbot/#/builders/85/builds/8174
This reverts commit fc3090109643af8d2da9822d0f99c84742b9c877.
This reverts commit a571f82a50416b767fd3cce0fb5027bb5dfec58c.
This reverts commit 64c045e25b8471bbb572bd29159c294a82a86a25.
std::addressof, plus the libstdc++-specific std::__addressof.
This brings us to parity with the corresponding GCC behavior.
Remove STDBUILTIN macro that ended up not being used.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Modify the IfStmt node to suppoort constant evaluated expressions.
Add a new ExpressionEvaluationContext::ImmediateFunctionContext to
keep track of immediate function contexts.
This proved easier/better/probably more efficient than walking the AST
backward as it allows diagnosing nested if consteval statements.
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
When property is declared in a superclass (or in a protocol),
it still can be of CXXRecord type and Sema could've already
generated a body for us. This patch joins two branches and
two ways of acquiring IVar in order to reuse the existing code.
And prevent us from generating l-value to r-value casts for
C++ types.
rdar://67416721
Differential Revision: https://reviews.llvm.org/D99194
This is recommit of 6c8041aa0f, reverted in de044f7562 because of some
fails. Original commit message is below.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
This change allow a CallExpr to have optional FPOptionsOverride object,
stored in trailing storage. The implementaion is made similar to the way
used in BinaryOperator.
Differential Revision: https://reviews.llvm.org/D84343
This reverts commit defd43a5b393bb63a902042adf578081b03b171d.
with correction to solve msan report
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit b55d723ed61052b77e720dcffecac43abe873186.
Reapply Modify FPFeatures to use delta not absolute settings
To solve https://bugs.llvm.org/show_bug.cgi?id=46166 where the
floating point settings in PCH files aren't compatible, rewrite
FPFeatures to use a delta in the settings rather than absolute settings.
With this patch, these floating point options can be benign.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D81869
This reverts commit 3a748cbf86cea3844fada04eeff4cc64b01f67e0.
I'm reverting this commit because I forgot to format the commit message
propertly. Sorry for the thrash.
test cases
Add support for #pragma float_control
Reviewers: rjmccall, erichkeane, sepavloff
Differential Revision: https://reviews.llvm.org/D72841
This reverts commit 85dc033caccaa6ab919d57f9759290be41240146, and makes
corrections to the test cases that failed on buildbots.
This is a code clean up of the PropertyAttributeKind and
ObjCPropertyAttributeKind enums in ObjCPropertyDecl and ObjCDeclSpec that are
exactly identical. This non-functional change consolidates these enums
into one. The changes are to many files across clang (and comments in LLVM) so
that everything refers to the new consolidated enum in DeclObjCCommon.h.
2nd Landing Attempt...
Differential Revision: https://reviews.llvm.org/D77233
This is a code clean up of the PropertyAttributeKind and
ObjCPropertyAttributeKind enums in ObjCPropertyDecl and ObjCDeclSpec that are
exactly identical. This non-functional change consolidates these enums
into one. The changes are to many files across clang (and comments in LLVM) so
that everything refers to the new consolidated enum in DeclObjCCommon.h.
Differential Revision: https://reviews.llvm.org/D77233
Fix a crash when constructing a body farm for accessors of a property
that is declared and @synthesize'd in different (but related) interfaces
with the explicit ivar syntax.
This is a follow-up for 0b58b80e.
Fix a canonicalization problem for the newly added property accessor stubs that
was causing a wrong decl to be used for 'self' in the accessor's body farm.
Fix a crash when constructing a body farm for accessors of a property
that is declared and @synthesize'd in different (but related) interfaces.
Differential Revision: https://reviews.llvm.org/D70158
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
When growing a body on a body farm, it's essential to use the same redeclaration
of the function that's going to be used during analysis. Otherwise our
ParmVarDecls won't match the ones that are used to identify argument regions.
This boils down to trusting the reasoning in AnalysisDeclContext. We shouldn't
canonicalize the declaration before farming the body because it makes us not
obey the sophisticated decision-making process of AnalysisDeclContext.
Differential Revision: https://reviews.llvm.org/D60899
llvm-svn: 358946