The goal of this sugar node is to be able to look at an arbitrary
FunctionType and tell if any of the parameters were decayed from an
array or function type. Ultimately this is necessary to implement
Microsoft's C++ name mangling scheme, which mangles decayed arrays
differently from normal pointers.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1014
llvm-svn: 184763
Introduce CXXStdInitializerListExpr node, representing the implicit
construction of a std::initializer_list<T> object from its underlying array.
The AST representation of such an expression goes from an InitListExpr with a
flag set, to a CXXStdInitializerListExpr containing a MaterializeTemporaryExpr
containing an InitListExpr (possibly wrapped in a CXXBindTemporaryExpr).
This more detailed representation has several advantages, the most important of
which is that the new MaterializeTemporaryExpr allows us to directly model
lifetime extension of the underlying temporary array. Using that, this patch
*drastically* simplifies the IR generation of this construct, provides IR
generation support for nested global initializer_list objects, fixes several
bugs where the destructors for the underlying array would accidentally not get
invoked, and provides constant expression evaluation support for
std::initializer_list objects.
llvm-svn: 183872
correctly in the presence of qualified types.
(I had to change the unittest because it was trying to cast a
QualifiedTypeLoc to TemplateSpecializationTypeLoc.)
llvm-svn: 183563
places which weren't setting it up properly. This allows us to get the right
cv-qualifiers for 'this' when it appears outside a method body in a class
template.
llvm-svn: 183483
correctly aligned. Not performing such computations led to misaligned loads,
which crash on some platforms and are generally bad on other platforms.
The implementation of TypeLocBuilder::pushImpl is rather messy; code using
TypeLocBuilder accidentally assumes that partial TypeLocs are
laid out like a complete TypeLoc. As a followup, I intend to work on
fixing the TypeLocBuilder API to avoid exposing partial TypeLocs; this should
substantially simplify the implemementation.
Fixes PR16144.
llvm-svn: 183466
syntactic form in template instantiation. Previously, this blocked the
reversion and we ended up losing inner CXXBindTemporaryExprs (and thus
forgetting to call destructors!).
llvm-svn: 182969
a FieldDecl from it, and propagate both into the closure type and the
LambdaExpr.
You can't do much useful with them yet -- you can't use them within the body
of the lambda, because we don't have a representation for "the this of the
lambda, not the this of the enclosing context". We also don't have support or a
representation for a nested capture of an init-capture yet, which was intended
to work despite not being allowed by the current standard wording.
llvm-svn: 181985
the actual parser and support arbitrary id-expressions.
We're actually basically set up to do arbitrary expressions here
if we wanted to.
Assembly operands permit things like A::x to be written regardless
of language mode, which forces us to embellish the evaluation
context logic somewhat. The logic here under template instantiation
is incorrect; we need to preserve the fact that an expression was
unevaluated. Of course, template instantiation in general is fishy
here because we have no way of delaying semantic analysis in the
MC parser. It's all just fishy.
I've also fixed the serialization of MS asm statements.
This commit depends on an LLVM commit.
llvm-svn: 180976
are now two distinct canonical 'AutoType's: one is the undeduced 'auto'
placeholder type, and the other is a deduced-but-dependent type. All
deduced-to-a-non-dependent-type cases are still non-canonical.
llvm-svn: 180789
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
It's a kind of implicit conversion, which we generally drop, but
more importantly it's got very specific placement requirements.
rdar://13617051
llvm-svn: 179254
http://lab.llvm.org:8011/builders/clang-x86_64-darwin10-gdb went back green
before it processed the reverted 178663, so it could not have been the culprit.
Revert "Revert 178663."
This reverts commit 4f8a3eb2ce5d4ba422483439e20c8cbb4d953a41.
llvm-svn: 178682
For variables and functions clang used to store two storage classes. The one
"as written" in the code and a patched one, which, for example, propagates
static to the following decls.
This apparently is from the days clang lacked linkage computation. It is now
redundant and this patch removes it.
llvm-svn: 178663
This was causing correctness issues for ARC and the static analyzer when a
function template has "consumed" Objective-C object parameters (i.e.
parameters that will be released by the function before returning).
The fix is threefold:
(1) Actually copy over the attributes from old ParmVarDecls to new ones.
(2) Have Sema::BuildFunctionType only work for building FunctionProtoTypes,
which it was doing anyway. This allows us to pass an ExtProtoInfo
instead of a plain ExtInfo and several flags.
(3) Drop param attributes as part of StripImplicitInstantiation, which is
used when an implicit instantiation is followed by an explicit one.
<rdar://problem/12685622>
llvm-svn: 176728
We were transforming the scope type of a pseudo-destructor expression
(e.g., the first T in x->T::~T()) as a freestanding type, which meant
that dependent template specialization types here would stay dependent
even when no template parameters were named. This would eventually
mean that a dependent expression would end up in what should be
fully-instantiated ASTs, causing IRgen to assert.
llvm-svn: 176723
The TypeLoc hierarchy used the llvm::cast machinery to perform undefined
behavior by casting pointers/references to TypeLoc objects to derived types
and then using the derived copy constructors (or even returning pointers to
derived types that actually point to the original TypeLoc object).
Some context is in this thread:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-December/056804.html
Though it's spread over a few months which can be hard to read in the mail
archive.
llvm-svn: 175462
ActOnFinishFullExpr that some of its checks only apply to discarded-value
expressions. This adds missing checks for unexpanded variadic template
parameter packs to a handful of constructs.
llvm-svn: 172485
CXXScalarValueInitExpr (or an ImplicitValueInitExpr), strip it back down to an
empty pair of parentheses so that the initialization code can tell that we're
performing value-initialization.
llvm-svn: 170867
too). When instantiating a direct-initializer, if we find it has zero
arguments, produce an empty ParenListExpr rather than returning a null
expression.
llvm-svn: 170490
copy-list-initialization (and doesn't add an additional copy step):
Fill in the ListInitialization bit when creating a CXXConstructExpr. Use it
when instantiating initializers in order to correctly handle instantiation of
copy-list-initialization. Teach TreeTransform that function arguments are
initializations, and so need this special treatment too. Finally, remove some
hacks which were working around SubstInitializer's shortcomings.
llvm-svn: 170489
This does limit these typedefs to being sequences, but no current usage
requires them to be contiguous (we could expand this to a more general
iterator pair range concept at some point).
Also, it'd be nice if SmallVector were constructible directly from an ArrayRef
but this is a bit tricky since ArrayRef depends on SmallVectorBaseImpl for the
inverse conversion. (& generalizing over all range-like things, while nice,
would require some nontrivial SFINAE I haven't thought about yet)
llvm-svn: 170482
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
determine which member function would be the callee from within the template
definition, don't pass that function as a "non-member function" to
CreateOverloadedBinOp. Instead, just rely on it to select the member function
for itself.
llvm-svn: 168818
initialization, don't rebuild it. Remove a couple of hacks which were trying to
work around this. Fix the special case for one-argument CXXConstructExprs to
not apply if the one argument is a default argument.
llvm-svn: 168582
found: if an overloaded operator& is present before a template definition,
the expression &T::foo is represented as a CXXOperatorCallExpr, not as a
UnaryOperator, so we didn't notice that it's permitted to reference a non-static
data member of an unrelated class.
While investigating this, I discovered another problem in this area: we are
treating template default arguments as unevaluated contexts during substitution,
resulting in performing incorrect checks for uses of non-static data members in
C++11. That is not fixed by this patch (I'll look into this soon; it's related
to the failure to correctly instantiate constexpr function templates), but was
resulting in this bug not firing in C++11 mode (except with -Wc++98-compat).
Original message:
PR14124: When performing template instantiation of a qualified-id outside of a
class, diagnose if the qualified-id instantiates to a non-static class member.
llvm-svn: 166385