UniformityAnalysis offers all of the same features and much more, there is no reason left to use the legacy DAs.
See RFC: https://discourse.llvm.org/t/rfc-deprecate-divergenceanalysis-legacydivergenceanalysis/69538
- Remove LegacyDivergenceAnalysis.h/.cpp
- Remove DivergenceAnalysis.h/.cpp + Unit tests
- Remove SyncDependenceAnalysis - it was not a real registered analysis and was only used by DAs
- Remove/adjust references to the passes in the docs where applicable
- Remove TTI hook associated with those passes.
- Move tests to UniformityAnalysis folder.
- Remove RUN lines for the DA, leave only the UA ones.
- Some tests had to be adjusted/removed depending on how they used the legacy DAs.
Reviewed By: foad, sameerds
Differential Revision: https://reviews.llvm.org/D148116
Based on the direction of IR Verifier changes in D146845, this documentation
needs to be updated.
Differential Revision: https://reviews.llvm.org/D148138
Remove C APIs for interacting with PassRegistry and pass
initialization. These are legacy PM concepts, and are no longer
relevant for the new pass manager.
Calls to these initialization functions can simply be dropped.
Differential Revision: https://reviews.llvm.org/D145043
I believe !dereferencable violation is immediate undefined behavior,
but this was not explicitly spelled out in LangRef. We already
assume that !dereferenceable is implicitly !noundef and cannot
return poison in isGuaranteedNotToBeUndefOrPoison().
The reason why we made dereferenceable implicitly noundef is that
the purpose of this metadata is to allow speculation, and that
would not be legal on a potential poison pointer.
Differential Revision: https://reviews.llvm.org/D148202
As discussed in [0], add a `weight` field to temporal profiling traces found in profiles. This allows users to use the `--weighted-input=` flag in the `llvm-profdata merge` command to weight traces from different scenarios differently.
Note that this is a breaking change, but since [1] landed very recently and there is no way to "use" this trace data, there should be no users of this feature. We believe it is acceptable to land this change without bumping the profile format version.
[0] https://reviews.llvm.org/D147812#4259507
[1] https://reviews.llvm.org/D147287
Reviewed By: snehasish
Differential Revision: https://reviews.llvm.org/D148150
This change uses the information from target.xml sent by
the GDB stub to produce C types that we can use to print
register fields.
lldb-server *does not* produce this information yet. This will
only work with GDB stubs that do. gdbserver or qemu
are 2 I know of. Testing is added that uses a mocked lldb-server.
```
(lldb) register read cpsr x0 fpcr fpsr x1
cpsr = 0x60001000
= (N = 0, Z = 1, C = 1, V = 0, TCO = 0, DIT = 0, UAO = 0, PAN = 0, SS = 0, IL = 0, SSBS = 1, BTYPE = 0, D = 0, A = 0, I = 0, F = 0, nRW = 0, EL = 0, SP = 0)
```
Only "register read" will display fields, and only when
we are not printing a register block.
For example, cpsr is a 32 bit register. Using the target's scratch type
system we construct a type:
```
struct __attribute__((__packed__)) cpsr {
uint32_t N : 1;
uint32_t Z : 1;
...
uint32_t EL : 2;
uint32_t SP : 1;
};
```
If this register had unallocated bits in it, those would
have been filled in by RegisterFlags as anonymous fields.
A new option "SetChildPrintingDecider" is added so we
can disable printing those.
Important things about this type:
* It is packed so that sizeof(struct cpsr) == sizeof(the real register).
(this will hold for all flags types we create)
* Each field has the same storage type, which is the same as the type
of the raw register value. This prevents fields being spilt over
into more storage units, as is allowed by most ABIs.
* Each bitfield size matches that of its register field.
* The most significant field is first.
The last point is required because the most significant bit (MSB)
being on the left/top of a print out matches what you'd expect to
see in an architecture manual. In addition, having lldb print a
different field order on big/little endian hosts is not acceptable.
As a consequence, if the target is little endian we have to
reverse the order of the fields in the value. The value of each field
remains the same. For example 0b01 doesn't become 0b10, it just shifts
up or down.
This is needed because clang's type system assumes that for a struct
like the one above, the least significant bit (LSB) will be first
for a little endian target. We need the MSB to be first.
Finally, if lldb's host is a different endian to the target we have
to byte swap the host endian value to match the endian of the target's
typesystem.
| Host Endian | Target Endian | Field Order Swap | Byte Order Swap |
|-------------|---------------|------------------|-----------------|
| Little | Little | Yes | No |
| Big | Little | Yes | Yes |
| Little | Big | No | Yes |
| Big | Big | No | No |
Testing was done as follows:
* Little -> Little
* LE AArch64 native debug.
* Big -> Little
* s390x lldb running under QEMU, connected to LE AArch64 target.
* Little -> Big
* LE AArch64 lldb connected to QEMU's GDB stub, which is running
an s390x program.
* Big -> Big
* s390x lldb running under QEMU, connected to another QEMU's GDB
stub, which is running an s390x program.
As we are not allowed to link core code to plugins directly,
I have added a new plugin RegisterTypeBuilder. There is one implementation
of this, RegisterTypeBuilderClang, which uses TypeSystemClang to build
the CompilerType from the register fields.
Reviewed By: jasonmolenda
Differential Revision: https://reviews.llvm.org/D145580
This commit is removing the last pieces of AnalysisWrapper.cpp
(including the ExternalFunctionsPassedConstants pass, aka
print-externalfnconstants).
The pass only existed for the legacy PM, and it was not regression
tested. And since the pass did not force the use of the legacy pass
manager there was no simply way to run the pass nowadays, at least
not by using opt.
Differential Revision: https://reviews.llvm.org/D148081
As described in [0], this extends IRPGO to support //Temporal Profiling//.
When `-pgo-temporal-instrumentation` is used we add the `llvm.instrprof.timestamp()` intrinsic to the entry of functions which in turn gets lowered to a call to the compiler-rt function `INSTR_PROF_PROFILE_SET_TIMESTAMP()`. A new field in the `llvm_prf_cnts` section stores each function's timestamp. Then in `llvm-profdata merge` we convert these function timestamps into a //trace// and add it to the indexed profile.
Since these traces could significantly increase the profile size, we've added `-max-temporal-profile-trace-length` and `-temporal-profile-trace-reservoir-size` to limit the length of a trace and the number of traces in a profile, respectively.
In a future diff we plan to use these traces to construct an optimized function order to reduce the number of page faults during startup.
Special thanks to Julian Mestre for helping with reservoir sampling.
[0] https://discourse.llvm.org/t/rfc-temporal-profiling-extension-for-irpgo/68068
Reviewed By: snehasish
Differential Revision: https://reviews.llvm.org/D147287
The GFX11 NGG Streamout Instructions perform atomic operations on
dedicated registers. At the moment, they lack machine memory operands,
which causes the si-memory-legalizer pass to treat them conservatively
and introduce several unnecessary waits and cache invalidations.
This patch introduces a new address space to represent these special
registers and teaches instruction selection to add memory operands with
this new address space to DS_ADD/SUB_GS_REG_RTN.
Since this address space is meant to be compiler-internal, we move it
up a bit from the other address spaces and give it the number 128.
According to the LLVM Language Reference, address space numbers can go
all the way up to 2^24, but I'm not sure how well this is supported in
practice [1], so using a smaller number seems safer.
[1] 0107513fe7/llvm/utils/TableGen/IntrinsicEmitter.cpp (L401)
Differential Revision: https://reviews.llvm.org/D146031
This patch adds in documentation for the --use-dummy-perf-counters
option (introduced in D146301).
Reviewed By: kpdev42
Differential Revision: https://reviews.llvm.org/D147842
D147710 introduced a new annotation-count subcommand to llvm-remarkutil
and added in documentation. However, the reference added under the
subcommands list never actually pointed to anything. This patch adds a
marker for the reference to point to so that the link works and the
sphinx build finishes without any errors.
This adds a `annotation-count` option to llvm-remarkutil.
```
llvm-remarkutil annotation-count -remark=REMARK
```
This will print out the remark count for a pass that uses annotation remarks.
Differential Revision: https://reviews.llvm.org/D147710
Presenting more than one way to satisfy the single-weak-ref requirement leads to
confusing messaging for the end user. Use the introduction of a single unused
weak variable as the preferred solution. This differential modifies D146745.
rdar://103453678
Reviewed By: yln, thetruestblue
Differential Revision: https://reviews.llvm.org/D147526
This is intended to document the decision made in recent discussion, and ratified at the last risc-v sync up call two weeks ago.
The wording here turned out to be a bit tricky. I ended up using the word "revision" as the specification internally defines several versioning schemes, and RVI assigns particular meaning to the words "specification version" that I really didn't want to get into. If anyone has suggestions on how to improve this, please don't hesitate to chime in.
Differential Revision: https://reviews.llvm.org/D147183
Explain in the release notes that the Darwin dynamic linker (dyld) requires
that at least one weak symbol be present in any mach-o file that defines an
intended override of a sanitizer dylib weak reference.
rdar://103453678
Reviewed By: thetruestblue
Differential Revision: https://reviews.llvm.org/D146745
This patch renames the `mroptr` option to `mxcoff-roptr` to indicate in the option itself that it is xcoff specific.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D147161
New versions I2.1, F2.2, D2.2 A2.1
Make F and Zfinx imply Zicsr.
Make G imply Zifencei.
This should have no impact to generated code. We have no plans to require Zicsr/Zifencei extension to be explicitly enabled to use Zicsr/Zifencei instructions in assembly.
See https://reviews.llvm.org/D147183 for documentation regarding what version specification we implement.
Reviewed By: asb
Differential Revision: https://reviews.llvm.org/D147179
For profile staleness report, before it only counts for the top-level function samples in the nested profile, the samples in the inlinees are ignored. This could affect the quality of the metrics when there are heavily inlined functions. This change adds a feature to flatten the nested profile and we're changing to use flatten profile as the input for stale profile detection and matching.
Example for profile flattening:
```
Original profile:
_Z3bazi:20301:1000
1: 1000
3: 2000
5: inline1:1600
1: 600
3: inline2:500
1: 500
Flattened profile:
_Z3bazi:18701:1000
1: 1000
3: 2000
5: 600 inline1:600
inline1:1100:600
1: 600
3: 500 inline2: 500
inline2:500:500
1: 500
```
This feature could be useful for offline analysis, like understanding the hotness of each individual function. So I'm adding the support to `llvm-profdata merge` under `--gen-flattened-profile`.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D146452
This patch adds the basic MC layer support for Zicond, based on
[1.0-rc1](https://github.com/riscv/riscv-zicond/releases/tag/v1.0-rc1).
As with other extensions, if there are additional changes between
release candidates without incrementing the version number we won't be
able to reflect that in the version number. I believe we've previously
decided this is not a problem for extensions still considered
experimental (i.e. not yet ratified).
Differential Revision: https://reviews.llvm.org/D146946
Many uses of getIntPtrType() were using that type to calculate the
neened type for GEP offset arguments. However, some time ago,
DataLayout was extended to support pointers where the size of the
pointer is not equal to the size of the values used to index it.
Much code was already migrated to, for example, use getIndexSizeInBits
instead of getPtrSizeInBits, but some rewrites still used
getIntPtrType() to get the type for GEP offsets.
This commit changes uses of getIntPtrType() to getIndexType() where
they are involved in a GEP-related calculation.
In at least one case (bounds check insertion) this resolves a compiler
crash that the new test added here would previously trigger.
This commit does not impact
- C library-related rewriting (memcpy()), which are operating under
the assumption that intptr_t == size_t. While all the mechanisms for
breaking this assumption now exist, doing so is outside the scope of
this commit.
- Code generation and below. Note that the use of getIntPtrType() in
CodeGenPrepare will be changed in a future commit.
- Usage of getIntPtrType() in any backend
Depends on D143435
Reviewed By: arichardson
Differential Revision: https://reviews.llvm.org/D143437
ExecutorAddr was introduced in b8e5f918166 as an eventual replacement for
JITTargetAddress. ExecutorSymbolDef is introduced in this patch as a
replacement for JITEvaluatedSymbol: ExecutorSymbolDef is an (ExecutorAddr,
JITSymbolFlags) pair, where JITEvaluatedSymbol was a (JITTargetAddress,
JITSymbolFlags) pair.
A number of APIs had already migrated from JITTargetAddress to ExecutorAddr,
but many of ORC's internals were still using the older type. This patch aims
to address that.
Some public APIs are affected as well. If you need to migrate your APIs you can
use the following operations:
* ExecutorAddr::toPtr replaces jitTargetAddressToPointer and
jitTargetAddressToFunction.
* ExecutorAddr::fromPtr replace pointerToJITTargetAddress.
* ExecutorAddr(JITTargetAddress) creates an ExecutorAddr value from a
JITTargetAddress.
* ExecutorAddr::getValue() creates a JITTargetAddress value from an
ExecutorAddr.
JITTargetAddress and JITEvaluatedSymbol will remain in JITSymbol.h for now, but
the aim will be to eventually deprecate and remove these types (probably when
MCJIT and RuntimeDyld are deprecated).
Currently, the llvm-exegesis documentation page has all
snippet annotation information under an example. This patch refactors
the annotation documentation to a separate section to make things more
clear and to make adding future annotations easier. This patch also
significantly expands the documentation on the memory scratch space to
which a pointer can be passed through a register as the documentation on
this was quite sparse previously.
Reviewed By: courbet
Differential Revision: https://reviews.llvm.org/D146890