Header files that come with CUDA are assuming split host/device
compilation and are not usable by clang out of the box.
With a bit of preprocessor magic it's possible to twist them
into something clang can use.
This wrapper always includes CUDA headers exactly the same way during
host and device compilation passes and produces identical preprocessed
content during host and device side compilation for sm_35 GPUs. Device
compilation passes for older GPUs will see a smaller subset of device
functions supported by particular GPU.
The wrapper assumes specific contents of CUDA header files and works
only with CUDA 7.0 and 7.5.
Differential Revision: http://reviews.llvm.org/D13171
llvm-svn: 253388
- added detection of libdevice bitcode file and API to find one appropriate for the GPU we're compiling for.
- pass additional cc1 options for linking with detected libdevice bitcode
- added -nocudalib to prevent automatic linking with libdevice
- added test cases to verify new functionality
Differential Revision: http://reviews.llvm.org/D14556
llvm-svn: 253387
In order to compile a CUDA file clang must be able to find
include files for both both host and device.
This patch passes AuxToolchain to AddPreprocessingOptions and
uses it to add include paths for the opposite side of compilation.
We also must be able to find CUDA include files. If the driver
found CUDA installation, it adds appropriate include path
to CUDA headers. This can be disabled with '-nocudainc'.
- Added include paths for the opposite side of compilation.
- Added include paths to detected CUDA installation.
- Added -nocudainc to prevent adding CUDA include path.
- Added test cases to verify new functionality.
Differential Revision: http://reviews.llvm.org/D13170
llvm-svn: 253386
Clang needs to know target triple for both sides of compilation so that
preprocessor macros and target builtins from both sides are available.
This change augments Compilation class to carry information about
toolchains used during different CUDA compilation passes and refactors
BuildActions to use it when it constructs CUDA jobs.
Removed DeviceTriple from CudaHostAction/CudaDeviceAction as it's no
longer needed.
Differential Revision: http://reviews.llvm.org/D13144
llvm-svn: 253385
Summary:
This change tries to make the root cause of instrumented profile data merge failures clearer.
Previous:
$ llvm-profdata merge test_0.profraw test_1.profraw -o test_merged.profdata
test_1.profraw: foo: Function count mismatch
test_1.profraw: bar: Function count mismatch
test_1.profraw: baz: Function count mismatch
...
Changed:
$ llvm-profdata merge test_0.profraw test_1.profraw -o test_merged.profdata
test_1.profraw: foo: Function basic block count change detected (counter mismatch)
Make sure that all profile data to be merged is generated from the same binary.
test_1.profraw: bar: Function basic block count change detected (counter mismatch)
test_1.profraw: baz: Function basic block count change detected (counter mismatch)
...
Reviewers: dnovillo, davidxl, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14739
llvm-svn: 253384
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
llvm-svn: 253378
The instruction combiner previously removed types from filter clauses in Landing Pad instructions if the type had previously been seen in a catch clause. This is incorrect and prevents unexpected exception handlers from rethrowing the caught type.
Differential Revision: http://reviews.llvm.org/D14669
llvm-svn: 253370
When resolving R_PPC64_REL24, code used to check for an address delta
that fits in 24 bits, while the instructions that take this relocation
actually can process address deltas that fit into *26* bits (as those
instructions have a 24 bit field, but implicitly append two zero bits
at the end since all instruction addresses are a multiple of 4).
This means that code would signal overflow once a single object's text
section exceeds 8 MB, while we can actually support up to 32 MB.
Partially fixes PR25540.
llvm-svn: 253369
This patch removes the std::string& argument from a number of C++ LTO API calls
and instead makes them use the installed diagnostic handler. This would also
improve consistency of diagnostic handling infrastructure: if an LTO client used
lto_codegen_set_diagnostic_handler() to install a custom error handler, we do
not want some error messages to go through the custom error handler, and some
other error messages to go into sLastErrorString.
llvm-svn: 253367
While setting function attributes we check all instructions that may access memory. For a call instruction we check all arguments. The special check is required for pointers.
I added vector-of-pointers to the call arguments types that should be checked.
Differential Revision: http://reviews.llvm.org/D14693
llvm-svn: 253363
The tzcnt intrinsics are used non non-BMI targets by code (e.g. ffmpeg)
that uses it as a potentially faster BSF.
The TZCNT instruction is special in that it's encoded in a
backward-compatible way and behaves as BSF on non-BMI targets.
Differential Revision: http://reviews.llvm.org/D14748
llvm-svn: 253358
"-arch armv7k" is only normally used with a watchos target, but Clang doesn't
stop you from giving a "-miphoneos-version-min" option too, converting the
triple to "thumbv7k-apple-ios". In this case the backend will decide to use
SjLj exceptions, so Clang needs to agree so it can create the correct
predefines.
Fortunately, there's a handy function to make the decision for us now.
llvm-svn: 253355
This is no longer needed with --find-swig, and although innocuous on systems with
swig in the path, it blows up when there is no swig in the path. This should
have been removed in the prior check-in.
llvm-svn: 253353
The underlying issues surrounding codegen for 32-bit vselects have been resolved. The pessimistic costs for 64-bit vselects remain due to the bad
scalarization that is still happening there.
I tested this on A57 in T32, A32 and A64 modes. I saw no regressions, and some improvements.
From my benchmarks, I saw these improvements in A57 (T32)
spec.cpu2000.ref.177_mesa 5.95%
lnt.SingleSource/Benchmarks/Shootout/strcat 12.93%
lnt.MultiSource/Benchmarks/MiBench/telecomm-CRC32/telecomm-CRC32 11.89%
I also measured A57 A32, A53 T32 and A9 T32 and found no performance regressions. I see much bigger wins in third-party benchmarks with this change
Differential Revision: http://reviews.llvm.org/D14743
llvm-svn: 253349
Summary:
This patch changes the behavior of path::system_temp_directory() on Windows to be closer to GetTempPath Windows API call. Enforces path separator to be the native one, makes path absolute, etc. GetTempPath is not used directly because of limitations/implementation bugs on Windows 7.
Windows specific unit tests are added. Most of them runs in separated process with modified environment variables.
This change fixes FileSystemTest.CreateDir unittest that had been failing when run from Unix-like shell on Windows (Unix-like path separator (/) used in env variables).
Reviewers: chapuni, rafael, aaron.ballman
Subscribers: rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D14231
llvm-svn: 253345
SELECT_CC has the nasty property of having operands with unrelated
types. So if you do something like:
f32 = select_cc f16, f16, f32, f32, cc
You'd only look for the action for <select_cc, f32>, but never f16.
If the types are all legal, but the op isn't (as for f16 on AArch64,
or for f128 on x86_64/AArch64?), then you get into trouble.
For f128, we have softenSetCCOperands to handle this case.
Similarly, for f16, we can directly promote the CC operands.
llvm-svn: 253344
Now that setExecutable() changed to do all the ground work to make
memory executable on the host, we can remove all (redundant) calls
to invalidate instruction cache here.
As an added bonus, this makes invalidateInstructionCache() dead
code, so it can be removed.
Differential Revision: http://reviews.llvm.org/D13631
llvm-svn: 253343
setExecutable() should do everything that's needed to make the memory
executable on host, i.e. unconditionally set permissions + invalidate
instruction cache. llvm-rtdyld will be updated in my next commit.
Discusseed with: Lang Hames (as part of D13631).
llvm-svn: 253341
Statepoint lowering currently expects that the target method of a
statepoint only defines a single value. This precludes using
statepoints with ABIs that return values in multiple registers
(e.g. the SysV AMD64 ABI). This change adds support for lowering
statepoints with mutli-def targets.
llvm-svn: 253339
Several places in AsmPrinter.cpp print comments describing MachineOperand
registers using MCRegisterInfo, which uses MCOperand-oriented names. This
doesn't work for targets that use virtual registers exclusively, as
WebAssembly does, since virtual registers are represented and printed
differently.
This patch preserves what seems to be the spirit of r229978, avoiding the
use of TM.getSubtargetImpl(), while still using MachineOperand-oriented
printing for MachineOperands.
Differential Revision: http://reviews.llvm.org/D14709
llvm-svn: 253338
This reverts commit r253269.
This leads to assert / segfault triggering on the following reduced example:
float foo(float U, float base, float cell) { return (U = 2 * base) - cell; }
llvm-svn: 253337