This merges the functionality of ResolvedUnexpandedPackExpr into
FunctionParmPackExpr. I also added a test to show that
https://github.com/llvm/llvm-project/issues/125103 should be fixed with
this. I put the removal of ResolvedUnexpandedPackExpr in its own commit.
Let me know what you think.
Fixes#125103
Class templates might be only instantiated when they are required to be
complete, but checking the template args against the primary template is
immediate.
This result is cached so that later when the class is instantiated,
checking against the primary template is not repeated.
The 'MatchedPackOnParmToNonPackOnArg' flag is also produced upon
checking against the primary template, so it needs to be cached in the
specialziation as well.
This fixes a bug which has not been in any release, so there are no
release notes.
Fixes#125290
This is an implementation of P1061 Structure Bindings Introduce a Pack
without the ability to use packs outside of templates. There is a couple
of ways the AST could have been sliced so let me know what you think.
The only part of this change that I am unsure of is the
serialization/deserialization stuff. I followed the implementation of
other Exprs, but I do not really know how it is tested. Thank you for
your time considering this.
---------
Co-authored-by: Yanzuo Liu <zwuis@outlook.com>
This fixes instantiation of definition for friend function templates,
when the declaration found and the one containing the definition have
different template contexts.
In these cases, the the function declaration corresponding to the
definition is not available; it may not even be instantiated at all.
So this patch adds a bit which tracks which function template
declaration was instantiated from the member template. It's used to find
which primary template serves as a context for the purpose of
obtainining the template arguments needed to instantiate the definition.
Fixes#55509
Relanding patch, with no changes, after it was reverted due to revert of
commit this patch depended on.
This is take two of #70976. This iteration of the patch makes sure that
custom
diagnostics without any warning group don't get promoted by `-Werror` or
`-Wfatal-errors`.
This implements parts of the extension proposed in
https://discourse.llvm.org/t/exposing-the-diagnostic-engine-to-c/73092/7.
Specifically, this makes it possible to specify a diagnostic group in an
optional third argument.
For deduction guides generated from alias template CTAD, store the
deduction guide they were originated from. The source kind is also
maintained for future expansion in CTAD from inherited constructors.
This tracking is required to determine whether an alias template already
has a deduction guide corresponding to some deduction guide on the
original template, in order to support deduction guides for the alias
from deduction guides declared after the initial usage.
This commit addresses a bug occurring when an unscoped member enumeration
of a class template is introduced with an opaque-enum-declaration and later
redeclared with an enum-specifier (per C++23 [class.mem] p6).
Previously, the enumerators, or EnumConstantDecl, of the enum-specifier
were instantiated at both declarations, leading to different issues:
* erroneous ambiguities when referencing the enumerators,
* duplicated diagnostics in the enumerator-list.
The issue is resolved by ensuring that enumerators are instantiated only
at the first instantiated declaration, analogous to nested classes.
Fixes#124405
As we create defaul constructors lazily, we should not inherit from the
parent evaluation context.
However, we need to make an exception for lambdas (in particular their
conversion operators, which are also implicitly defined).
As a drive-by, we introduce a generic way to query whether a function is
a member of a lambda.
This fixes a regression introduced by baf6bd3.
Fixes#118000
This commit fixes issues with enumeration types instantiated from an
opaque-enum-declarations
(see [dcl.enum]) in class templates broke basic assumptions during
parsing of arithmetic
expressions due to absent (NULL TYPE) promotion types of instances of
EnumDecl.
To this end, we repeat the simple steps in `Sema::ActOnTag` to evaluate
the promotion type
of a fixed enumeration based on its underlying type (see C++11
[conv.prom] p4).
Note that if, instead, a full *enum-specifier* (subsequent curly braces)
is provided,
`Sema::ActOnEnumBody` is re-invoked on template instantiation anyway
overriding the
promotion type and hiding the issue. This is analog to how enumerations
declarations
outside of template declarations are handled.
Note that, in contrast to `Sema::ActOnEnumBody`, `Sema::ActOnTag` is
*not* called again
for the instantiated enumeration type.
Fixes#117960.
---------
Co-authored-by: cor3ntin <corentinjabot@gmail.com>
This fixes a crash when instantiating default arguments for templated
friend function declarations which lack a definition.
There are implementation limits which prevents us from finding the
pattern for such functions, and this causes difficulties
setting up the instantiation scope for the function parameters.
This patch skips instantiating the default argument in these cases,
which causes a minor regression in error recovery, but otherwise avoids
the crash.
The previous attempt #113777 accidentally skipped all default argument
constructions, causing some regressions. This patch resolves that by
moving the guard to InstantiateDefaultArgument() where the handling of
templates takes place.
Fixes https://github.com/llvm/llvm-project/issues/113324
Note that PointerUnion::{is,get} have been soft deprecated in
PointerUnion.h:
// FIXME: Replace the uses of is(), get() and dyn_cast() with
// isa<T>, cast<T> and the llvm::dyn_cast<T>
I'm not touching PointerUnion::dyn_cast for now because it's a bit
complicated; we could blindly migrate it to dyn_cast_if_present, but
we should probably use dyn_cast when the operand is known to be
non-null.
We made the incorrect assumption that names of fields are unique when
creating their default initializers.
We fix that by keeping track of the instantiaation pattern for field
decls that are placeholder vars,
like we already do for unamed fields.
Fixes#114069
LLVM support for the attribute has been implemented already, so it just
plumbs it through to the CUDA front-end.
One notable difference from NVCC is that the attribute can be used
regardless of the targeted GPU. On the older GPUs it will just be
ignored. The attribute is a performance hint, and does not warrant a
hard error if compiler can't benefit from it on a particular GPU
variant.
This patch reapplies #111173, fixing a bug when instantiating dependent
expressions that name a member template that is later explicitly
specialized for a class specialization that is implicitly instantiated.
The bug is addressed by adding the `hasMemberSpecialization` function,
which return `true` if _any_ redeclaration is a member specialization.
This is then used when determining the instantiation pattern for a
specialization of a template, and when collecting template arguments for
a specialization of a template.
By allowing AnnotateAttr to be applied to statements, users can place arbitrary information in the AST for later use.
For example, this can be used for HW-targeted language extensions that involve specialized loop annotations.
While profiling a clang invocation using `-ftime-trace`, now we add
instant events when template instantiation is deferred.
These events include the fully qualified name of the function template
being deferred and therefore could be very verbose. This is therefore
only added in verbose mode (when `TimeTraceVerbose` is enabled).
The point of time when a particular instantiation is deferred can be
used to identify the parent TimeTrace scope (usually another function
instantiation), which is responsible for deferring this instantiation.
This relationship can be used to attribute the cost of a deferred
template instantiation to the function deferring this particular
instantiation.
This fixes instantiation of definition for friend function templates,
when the declaration found and the one containing the definition
have different template contexts.
In these cases, the the function declaration corresponding to the
definition is not available; it may not even be instantiated at all.
So this patch adds a bit which tracks which function template
declaration was instantiated from the member template.
It's used to find which primary template serves as a context
for the purpose of obtaining the template arguments needed
to instantiate the definition.
Fixes#55509
Reapplies #106585, fixing an issue where non-dependent names of member
templates appearing prior to that member template being explicitly
specialized for an implicitly instantiated class template specialization
would incorrectly use the definition of the explicitly specialized
member template.
This reverts commit e39205654dc11c50bd117e8ccac243a641ebd71f.
There are further discussions in
https://github.com/llvm/llvm-project/pull/70976, happening for past two
weeks. Since there were no responses for couple weeks now, reverting
until author is back.
Currently, clang rejects the following explicit specialization of `f`
due to the constraints not being equivalent:
```
template<typename T>
struct A
{
template<bool B>
void f() requires B;
};
template<>
template<bool B>
void A<int>::f() requires B { }
```
This happens because, in most cases, we do not set the flag indicating
whether a `RedeclarableTemplate` is an explicit specialization of a
member of an implicitly instantiated class template specialization until
_after_ we compare constraints for equivalence. This patch addresses the
issue (and a number of other issues) by:
- storing the flag indicating whether a declaration is a member
specialization on a per declaration basis, and
- significantly refactoring `Sema::getTemplateInstantiationArgs` so we
collect the right set of template argument in all cases.
Many of our declaration matching & constraint evaluation woes can be
traced back to bugs in `Sema::getTemplateInstantiationArgs`. This
change/refactor should fix a lot of them. It also paves the way for
fixing #101330 and #105462 per my suggestion in #102267 (which I have
implemented on top of this patch but will merge in a subsequent PR).
When rebuilding immediate invocations inside
`RemoveNestedImmediateInvocation()`, we employed a `TreeTransform` to
exercise the traversal. The transformation has a side effect that, for
template specialization types, their default template arguments are
substituted separately, and if any lambdas are present, they will be
transformed into distinct types than those used to instantiate the
templates right before the `consteval` handling.
This resulted in `B::func()` getting redundantly instantiated for the
case in question. Since we're also in an immediate evaluation context,
the body of `foo()` would also get instantiated, so we end up with a
spurious friend redefinition error.
Like what we have done in `ComplexRemove`, this patch also avoids the
lambda's transformation in TemplateInstantiator if we know we're
rebuilding immediate calls. In addition, this patch also consolidates
the default argument substitution logic in
`CheckTemplateArgumentList()`.
Fixes#107175
This reverts commit e7f782e7481cea23ef452a75607d3d61f5bd0d22.
This had UBSan failures:
[----------] 1 test from ConfigCompileTests
[ RUN ] ConfigCompileTests.DiagnosticSuppression
Config fragment: compiling <unknown>:0 -> 0x00007B8366E2F7D8 (trusted=false)
/usr/local/google/home/fmayer/large/llvm-project/llvm/include/llvm/ADT/IntrusiveRefCntPtr.h:203:33: runtime error: reference binding to null pointer of type 'clang::DiagnosticIDs'
UndefinedBehaviorSanitizer: undefined-behavior /usr/local/google/home/fmayer/large/llvm-project/llvm/include/llvm/ADT/IntrusiveRefCntPtr.h:203:33
Pull Request: https://github.com/llvm/llvm-project/pull/108645
The PR reapply https://github.com/llvm/llvm-project/pull/97308.
- Implement [CWG1815](https://wg21.link/CWG1815): Support lifetime
extension of temporary created by aggregate initialization using a
default member initializer.
- Fix crash that introduced in
https://github.com/llvm/llvm-project/pull/97308. In
`InitListChecker::FillInEmptyInitForField`, when we enter
rebuild-default-init context, we copy all the contents of the parent
context to the current context, which will cause the `MaybeODRUseExprs`
to be lost. But we don't need to copy the entire context, only the
`DelayedDefaultInitializationContext` was required, which is used to
build `SourceLocExpr`, etc.
---------
Signed-off-by: yronglin <yronglin777@gmail.com>
This reverts commit 45c8766973bb3bb73dd8d996231e114dcf45df9f
and 049512e39d96995cb373a76cf2d009a86eaf3aab.
This change triggers failed asserts on inputs like this:
struct a {
} constexpr b;
class c {
public:
c(a);
};
class B {
public:
using d = int;
struct e {
enum { f } g;
int h;
c i;
d j{};
};
};
B::e k{B::e::f, int(), b};
Compiled like this:
clang -target x86_64-linux-gnu -c repro.cpp
clang: ../../clang/lib/CodeGen/CGExpr.cpp:3105: clang::CodeGen::LValue
clang::CodeGen::CodeGenFunction::EmitDeclRefLValue(const clang::DeclRefExpr*):
Assertion `(ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
!E->getLocation().isValid()) && "Should not use decl without marking it used!"' failed.
This extends default argument deduction to cover class templates as
well, applying only to partial ordering, adding to the provisional
wording introduced in https://github.com/llvm/llvm-project/pull/89807.
This solves some ambuguity introduced in P0522 regarding how template
template parameters are partially ordered, and should reduce the
negative impact of enabling `-frelaxed-template-template-args` by
default.
Given the following example:
```C++
template <class T1, class T2 = float> struct A;
template <class T3> struct B;
template <template <class T4> class TT1, class T5> struct B<TT1<T5>>; // #1
template <class T6, class T7> struct B<A<T6, T7>>; // #2
template struct B<A<int>>;
```
Prior to P0522, `#2` was picked. Afterwards, this became ambiguous. This
patch restores the pre-P0522 behavior, `#2` is picked again.
HLSL output parameters are denoted with the `inout` and `out` keywords
in the function declaration. When an argument to an output parameter is
constructed a temporary value is constructed for the argument.
For `inout` pamameters the argument is initialized via copy-initialization
from the argument lvalue expression to the parameter type. For `out`
parameters the argument is not initialized before the call.
In both cases on return of the function the temporary value is written
back to the argument lvalue expression through an implicit assignment
binary operator with casting as required.
This change introduces a new HLSLOutArgExpr ast node which represents
the output argument behavior. The OutArgExpr has three defined children:
- An OpaqueValueExpr of the argument lvalue expression.
- An OpaqueValueExpr of the copy-initialized parameter.
- A BinaryOpExpr assigning the first with the value of the second.
Fixes#87526
---------
Co-authored-by: Damyan Pepper <damyanp@microsoft.com>
Co-authored-by: John McCall <rjmccall@gmail.com>
(This is one step towards tweaking `getTemplateInstantiationArgs()` as
discussed in https://github.com/llvm/llvm-project/pull/102922)
We don't always substitute into default arguments while transforming a
function parameter. In that case, we would preserve the uninstantiated
expression until after, e.g. building up a CXXDefaultArgExpr and
instantiate the expression there.
For member function instantiation, this algorithm used to cause a
problem in that the default argument of an out-of-line member function
specialization couldn't get properly instantiated. This is because, in
`getTemplateInstantiationArgs()`, we would give up visiting a function's
declaration context if the function is a specialization of a member
template. For example,
```cpp
template <class T>
struct S {
template <class U>
void f(T = sizeof(T));
};
template <> template <class U>
void S<int>::f(int) {}
```
The default argument `sizeof(U)` that lexically appears inside the
declaration would be copied to the function declaration in the class
template specialization `S<int>`, as well as to the function's
out-of-line definition. We use template arguments collected from the
out-of-line function definition when substituting into the default
arguments. We would therefore give up the traversal after the function,
resulting in a single-level template argument of the `f` itself. However
the default argument here could still reference the template parameters
of the primary template, hence the error.
In fact, this is similar to constraint checking in some respects: we
actually want the "whole" template arguments relative to the primary
template, not those relative to the function definition. So this patch
adds another flag to indicate `getTemplateInstantiationArgs()` for that.
This patch also consolidates the tests for default arguments and removes
some unnecessary tests.
When various `Sema*.h` and `Sema*.cpp` files were created, cleanup of
`Sema.h` includes and forward declarations was left for the later.
Now's the time. This commit touches `Sema.h` and Sema components:
1. Unused includes are removed.
2. Unused forward declarations are removed.
3. Missing includes are added (those files are largely IWYU-clean now).
4. Includes were converted into forward declarations where possible.
As this commit focuses on headers, all changes to `.cpp` files were
minimal, and were aiming at keeping everything buildable.