hasPredecessorHelper function allows predecessors to be cached to speed up
repeated invocations. This fixes PR10186.
X.isPredecessorOf(Y) now just calls Y.hasPredecessor(X)
Y.hasPredecessor(X) calls Y.hasPredecessorHelper(X, Visited, Worklist) with
empty Visited and Worklist sets (i.e. no caching over invocations).
Y.hasPredecessorHelper(X, Visited, Worklist) caches search state in Visited
and Worklist to speed up repeated calls. The Visited set is searched for X
before going to the worklist to further search the DAG if necessary.
llvm-svn: 134592
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
llvm-svn: 133503
GetDemandBits (which must operate on the vector element type).
Fix the a usage of getZeroExtendInReg which must also be done on scalar types.
llvm-svn: 133052
converted to add x,x if x is a undef. add undef, undef does not guarantee
that the resulting low order bit is zero.
Fixes <rdar://problem/9453156> and <rdar://problem/9487392>.
llvm-svn: 133022
The potential DAGCombine which enforces this more generally messes up some other very fragile patterns, so I'm leaving that alone, at least for now.
llvm-svn: 132809
If there is a store after the load node, then there is a chain, which means
that there is another user. Thus, asking hasOneUser would fail. Instead we
ask hasNUsesOfValue on the 'data' value.
llvm-svn: 131183
transformations in target-specific DAG combines without causing DAGCombiner to
delete the same node twice. If you know of a better way to avoid this (see my
next patch for an example), please let me know.
llvm-svn: 128758
1. Inform users of ADDEs with two 0 operands that it never sets carry
2. Fold other ADDs or ADDCs into the ADDE if possible
It would be neat if we could do the same thing for SETCC+ADD eventually, but we can't do that in target independent code.
llvm-svn: 126557
Limit the folding of any_ext and sext into the load operation to scalars.
Limit the active-bits trunc optimization to scalars.
Document vector trunc and vector sext in LangRef.
Similar to commit 126080 (for enabling zext).
llvm-svn: 126424
The DAGCombiner folds the zext into complex load instructions. This patch
prevents this optimization on vectors since none of the supported targets
knows how to perform load+vector_zext in one instruction.
llvm-svn: 126080
transformation if we can't legally create a build vector of the correct
type. Check that we can make the transformation first, and add a TODO to
refactor this code with similar cases.
Fixes: PR9223 and rdar://9000350
llvm-svn: 125631
generating i8 shift amounts for things like i1024 types. Add
an assert in getNode to prevent this from occuring in the future,
fix the buggy transformation, revert my previous patch, and
document this gotcha in ISDOpcodes.h
llvm-svn: 125465
The DAGCombiner created illegal BUILD_VECTOR operations.
The patch added a check that either illegal operations are
allowed or that the created operation is legal.
llvm-svn: 125435
The bug happens when the DAGCombiner attempts to optimize one of the patterns
of the SUB opcode. It tries to create a zero of type v2i64. This type is legal
on 32bit machines, but the initializer of this vector (i64) is target dependent.
Currently, the initializer attempts to create an i64 zero constant, which fails.
Added a flag to tell the DAGCombiner to create a legal zero, if we require that
the pass would generate legal types.
llvm-svn: 125391
the load, then it may be legal to transform the load and store to integer
load and store of the same width.
This is done if the target specified the transformation as profitable. e.g.
On arm, this can transform:
vldr.32 s0, []
vstr.32 s0, []
to
ldr r12, []
str r12, []
rdar://8944252
llvm-svn: 124708
This happens all the time when a smul is promoted to a larger type.
On x86-64 we now compile "int test(int x) { return x/10; }" into
movslq %edi, %rax
imulq $1717986919, %rax, %rax
movq %rax, %rcx
shrq $63, %rcx
sarq $34, %rax <- used to be "shrq $32, %rax; sarl $2, %eax"
addl %ecx, %eax
This fires 96 times in gcc.c on x86-64.
llvm-svn: 124559
This happens e.g. for code like "X - X%10" where we lower the modulo operation
to a series of multiplies and shifts that are then subtracted from X, leading to
this missed optimization.
llvm-svn: 124532
loads properly. We miscompiled the testcase into:
_test: ## @test
movl $128, (%rdi)
movzbl 1(%rdi), %eax
ret
Now we get a proper:
_test: ## @test
movl $128, (%rdi)
movsbl (%rdi), %eax
movzbl %ah, %eax
ret
This fixes PR8757.
llvm-svn: 122392
count operand. These should be the same but apparently are
not always, and this is cleaner anyway. This improves the
code in an existing test.
llvm-svn: 122354