attempt to fix https://github.com/llvm/llvm-project/issues/12361
Consider this example:
```cpp
class D {
class E{
class F{};
friend void foo(D::E::F& q);
};
friend void foo(D::E::F& q);
};
void foo(D::E::F& q) {}
```
The first friend declaration of foo is correct. After that, the second
friend declaration delayed access checking and set its previous
declaration to be the first one. When doing access checking of `F`(which
is private filed of `E`), we put its canonical declaration(the first
friend declaration) into `EffectiveContext.Functions`. Actually, we are
still checking the first one. This is incorrect due to the delayed
checking.
Creating a new scope to indicate we are parsing a friend declaration and
doing access checking in time.
Reapplies #78274 with the addition of a default-error warning
(`strict-primary-template-shadow`) that is issued for instances of
shadowing which were previously accepted prior to this patch.
I couldn't find an established convention for naming diagnostics related
to compatibility with previous versions of clang, so I just used the
prefix `ext_compat_`.
OpenACC3.3 2.5.4 says: "A program may not branch into or out of a
compute construct". While some of this restriction isn't particularly
checkable, 'break' and 'continue' are possible and pretty trivial, so
this patch implements those limitations.
It IS unclear in the case of a 'break' in a 'switch' what should happen
(an antagonistic reading of the standard would prevent it from
appearing), however we're choosing to special-case the break-in-switch
to ensure that this works (albeit, a 'parallel' directive on a 'switch'
isn't particularly useful, though permitted).
Future implementations of this rule will be in a follow-up patch.
This implements P2036R3 and P2579R0.
That is, explicit, int, and implicit capture become visible
at the start of the parameter head.
Reviewed By: aaron.ballman, rupprecht, shafik
Differential Revision: https://reviews.llvm.org/D124351
This reverts commit d708a186b6a9b050d09558163dd353d9f738c82d (and typo fix e4bc9898ddbeb70bc49d713bbf863f050f21e03f). It causes a compilation error for this:
```
struct StringLiteral {
template <int N>
StringLiteral(const char (&array)[N])
__attribute__((enable_if(N > 0 && N == __builtin_strlen(array) + 1,
"invalid string literal")));
};
struct Message {
Message(StringLiteral);
};
void Func1() {
auto x = Message("x"); // Note: this is fine
// Note: "xx\0" to force a different type, StringLiteral<3>, otherwise this
// successfully builds.
auto y = [&](decltype(Message("xx"))) {};
// ^ fails with: repro.cc:18:13: error: reference to local variable 'array'
// declared in enclosing function 'StringLiteral::StringLiteral<3>'
(void)x;
(void)y;
}
```
More details posted to D124351.
This implements P2036R3 and P2579R0.
That is, explicit, int, and implicit capture become visible
at the start of the parameter head.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124351
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
This makes `ninja clang` work in the absence of llvm::Optional::value.
This patch gives basic parsing and semantic support for "modifiers" of order clause introduced in OpenMP 5.1 ( section 2.11.3 )
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D127855
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Before the patch we calculated the NRVO candidate looking at the
variable's whole enclosing scope. The research in [P2025] shows that
looking at the variable's potential scope is better and covers more
cases where NRVO would be safe and desirable.
Many thanks to @Izaron for the original implementation.
Reviewed By: ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119792
This reverts commit 69dd89fdcbd846375a45e2fe3a88710887236d7a.
This reverts commit 04000c2f928a7adc32138a664d167f01b642bef3.
The current states breaks libstdc++ usage (https://reviews.llvm.org/D119136#3455423).
The fixup has been reverted as it caused other valid code to be disallowed.
I think we should start from the clean state by reverting all relevant commits.
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start
of the body would be parsed in the parent scope, such that
captures would not be available to look up.
The scoping is changed to have an outer lambda scope,
followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope
between the start of the lambda (to which we want to attach
the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured
variable to (and several parts of clang assume captures are handled from
the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope.
But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that
conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context,
we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point,
we can switch (for the second time) inside the lambda context,
unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also
transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope.
When trying to capture an implicit variable, if we are before the qualifiers of a lambda,
we need to remember that the variables are still in the parent's context (rather than in the call operator's).
This is a recommit of adff142dc2 after a fix in d8d793f29b4
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
This reverts commit adff142dc253d65b6560e420bba6b858d88d4a98.
This broke clang bootstrap: it made existing C++ code in LLVM invalid:
llvm/include/llvm/CodeGen/LiveInterval.h:630:53: error: captured variable 'Idx' cannot appear here
[=](std::remove_reference_t<decltype(*Idx)> V,
^
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136
Summary:
https://reviews.llvm.org/D59076 added a new coroutine error that
prevented users from using 'co_await' or 'co_yield' within a exception
handler. However, it was reverted in https://reviews.llvm.org/rC356774
because it caused a regression in nested scopes in C++ catch statements,
as documented by https://bugs.llvm.org/show_bug.cgi?id=41171.
The issue was due to an incorrect use of a `clang::ParseScope`. To fix:
1. Add a regression test for catch statement parsing that mimics the bug
report from https://bugs.llvm.org/show_bug.cgi?id=41171.
2. Re-apply the coroutines error patch from
https://reviews.llvm.org/D59076, but this time with the correct
ParseScope behavior.
Reviewers: GorNishanov, tks2103, rsmith, riccibruno, jbulow
Reviewed By: riccibruno
Subscribers: EricWF, jdoerfert, lewissbaker, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59752
llvm-svn: 356865
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This is the second attempt of r333500 (Update NRVO logic to support early return).
The previous one was reverted for a miscompilation for an incorrect NRVO set up on templates such as:
```
struct Foo {};
template <typename T>
T bar() {
T t;
if (false)
return T();
return t;
}
```
Where, `t` is marked as non-NRVO variable before its instantiation. However, while its instantiation, it's left an NRVO candidate, turned into an NRVO variable later.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47586
llvm-svn: 335019
Summary:
The previous implementation misses an opportunity to apply NRVO (Named Return Value
Optimization) below. That discourages user to write early return code.
```
struct Foo {};
Foo f(bool b) {
if (b)
return Foo();
Foo oo;
return oo;
}
```
That is, we can/should apply RVO for a local variable if:
* It's directly returned by at least one return statement.
* And, all reachable return statements in its scope returns the variable directly.
While, the previous implementation disables the RVO in a scope if there are multiple return
statements that refers different variables.
On the new algorithm, local variables are in NRVO_Candidate state at first, and a return
statement changes it to NRVO_Disabled for all visible variables but the return statement refers.
Then, at the end of the function AST traversal, NRVO is enabled for variables in NRVO_Candidate
state and refers from at least one return statement.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: xbolva00, Quuxplusone, arthur.j.odwyer, cfe-commits
Differential Revision: https://reviews.llvm.org/D47067
llvm-svn: 333500
The dump function for Scope only has 20 out of the 24 flags. Since it looped
until no flags were left, having an unknown flag lead to an infinite loop.
That loop has been changed to a single pass for each flag, plus an assert to
alert if new flags are added.
llvm-svn: 322813
if we are parsing a template specialization.
This commit makes changes to clear the TemplateParamScope bit and set
the TemplateParamParent field of the current scope to null if a template
specialization is being parsed.
Before this commit, Sema::ActOnStartOfLambdaDefinition would check
whether the parent template scope had any decls to determine whether
or not a template specialization was being parsed. This wasn't correct
since it couldn't distinguish between a real template specialization and
a template defintion with an unnamed template parameter (only template
parameters with names are added to the scope's decl list). To fix the
bug, this commit changes the code to check the pointer to the parent
template scope rather than the decl list.
rdar://problem/23440346
Differential Revision: http://reviews.llvm.org/D19175
llvm-svn: 267975
consider C++ that looks like:
inline int &f(bool b) {
if (b) {
static int i;
return i;
}
static int i;
return i;
}
Both 'i' variables must have distinct (and stable) names for linkage
purposes. The MSVC 2013 ABI would number the variables using a count of
the number of scopes that have been created. However, the final 'i'
returns to a scope that has already been created leading to a mangling
collision.
MSVC 2015 fixes this by giving the second 'i' the name it would have if
it were declared before the 'if'. However, this results in ABI breakage
because the mangled name, in cases where there was no ambiguity, would
now be different.
We implement the new behavior and only enable it if we are targeting the
MSVC 2015 ABI, otherwise the old behavior will be used.
This fixes PR18131.
llvm-svn: 232766
The lowering looks a lot like normal EH lowering, with the exception
that the exceptions are caught by executing filter expression code
instead of matching typeinfo globals. The filter expressions are
outlined into functions which are used in landingpad clauses where
typeinfo would normally go.
Major aspects that still need work:
- Non-call exceptions in __try bodies won't work yet. The plan is to
outline the __try block in the frontend to keep things simple.
- Filter expressions cannot use local variables until capturing is
implemented.
- __finally blocks will not run after exceptions. Fixing this requires
work in the LLVM SEH preparation pass.
The IR lowering looks like this:
// C code:
bool safe_div(int n, int d, int *r) {
__try {
*r = normal_div(n, d);
} __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) {
return false;
}
return true;
}
; LLVM IR:
define i32 @filter(i8* %e, i8* %fp) {
%ehptrs = bitcast i8* %e to i32**
%ehrec = load i32** %ehptrs
%code = load i32* %ehrec
%matches = icmp eq i32 %code, i32 u0xC0000094
%matches.i32 = zext i1 %matches to i32
ret i32 %matches.i32
}
define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) {
%rr = invoke i32 @normal_div(i32 %n, i32 %d)
to label %normal unwind to label %lpad
normal:
store i32 %rr, i32* %r
ret i1 1
lpad:
%ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler
catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*)
%ehptr = extractvalue {i8*, i32} %ehvals, i32 0
%sel = extractvalue {i8*, i32} %ehvals, i32 1
%filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*))
%matches = icmp eq i32 %sel, %filter_sel
br i1 %matches, label %eh.except, label %eh.resume
eh.except:
ret i1 false
eh.resume:
resume
}
Reviewers: rjmccall, rsmith, majnemer
Differential Revision: http://reviews.llvm.org/D5607
llvm-svn: 226760
Assigns indices to try blocks. These indices will used in constructing
tables that the mscrt function __except_handler3 reads during SEH.
Testing will occur once we actually emit the tables, in a subsequent
patch.
llvm-svn: 213437
Give scope a SEHTryScope bit, set that in ParseSEHTry(), and let Sema
walk the scope chain to find the SEHTry parent on __leave statements.
(They are rare enough that it seems better to do the walk instead of
giving Scope a SEHTryParent pointer -- this is similar to AtCatchScope.)
llvm-svn: 212422
We may not have the mangling for static locals vs. enums completely figured out,
but at least for my simple test cases, enums should not increment the mangling
number.
Differential Revision: http://reviews.llvm.org/D4164
llvm-svn: 211078
This patch implements semantic analysis to make sure that the loop is in OpenMP canonical form.
This is the form required for 'omp simd', 'omp for' and other loop pragmas.
Differential revision: http://reviews.llvm.org/D3778
llvm-svn: 210095
Summary:
The MSVC ABI appears to mangle the lexical scope into the names of
statics. Specifically, a counter is incremented whenever a scope is
entered where things can be declared in such a way that an ambiguity can
arise. For example, a class scope inside of a class scope doesn't do
anything interesting because the nested class cannot collide with
another nested class.
There are problems with this scheme:
- It is unreliable. The counter is only incremented when a previously
never encountered scope is entered. There are cases where this will
cause ambiguity amongst declarations that have the same name where one
was introduced in a deep scope while the other was introduced right
after in the previous lexical scope.
- It is wasteful. Statements like: {{{{{{{ static int foo = a; }}}}}}}
will make the mangling of "foo" larger than it need be because the
scope counter has been incremented many times.
Because of these problems, and practical implementation concerns. We
choose not to implement this scheme if the local static or local type
isn't visible. The mangling of these declarations will look very
similar but the numbering will make far more sense, this scheme is
lifted from the Itanium ABI implementation.
Reviewers: rsmith, doug.gregor, rnk, eli.friedman, cdavis5x
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2953
llvm-svn: 202951
Due to statement expressions supported as GCC extension, it is possible
to put 'break' or 'continue' into a loop/switch statement but outside
its body, for example:
for ( ; ({ if (first) { first = 0; continue; } 0; }); )
This code is rejected by GCC if compiled in C mode but is accepted in C++
code. GCC bug 44715 tracks this discrepancy. Clang used code generation
that differs from GCC in both modes: only statement of the third
expression of 'for' behaves as if it was inside loop body.
This change makes code generation more close to GCC, considering 'break'
or 'continue' statement in condition and increment expressions of a
loop as it was inside the loop body. It also adds error for the cases
when 'break'/'continue' appear outside loop due to this syntax. If
code generation differ from GCC, warning is issued.
Differential Revision: http://llvm-reviews.chandlerc.com/D2518
llvm-svn: 199897
This patch wasn't reviewed, and isn't correctly preserving the behaviors
relied upon by QT. I don't have a direct example of fallout, but it
should go through the standard code review process. For example, it
should never have removed the QT test case that was added when fixing
those users.
llvm-svn: 193174
Due to statement expressions supported as GCC extension, it is possible
to put 'break' or 'continue' into a loop/switch statement but outside its
body, for example:
for ( ; ({ if (first) { first = 0; continue; } 0; }); )
Such usage must be diagnosed as an error, GCC rejects it. To recognize
this and similar patterns the flags BreakScope and ContinueScope are
temporarily turned off while parsing condition expression.
Differential Revision: http://llvm-reviews.chandlerc.com/D1762
llvm-svn: 193073
The bug that was caught by Apple's internal buildbots was valid and also showed another bug in my implementation.
These are now fixed, with regression tests added to catch them both (not Darwin-specific).
Original log:
====================
Revert r151638 because it causes assertion hit on PCH creation for Cocoa.h
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
====================
llvm-svn: 151712
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
llvm-svn: 151667
loop and switch statements, by teaching Scope that a function scope never has
a continue/break parent for the purposes of control flow. Remove the hack in
block and lambda expressions which worked around this by pretending that such
expressions were continue/break scopes.
Remove Scope::ControlParent, since it's unused.
In passing, teach default statements to recover properly from a missing ';', and
add a fixit for same to both default and case labels (the latter already
recovered correctly).
llvm-svn: 150776
parameter node and use this to correctly mangle parameter
references in function template signatures.
A follow-up patch will improve the storage usage of these
fields; here I've just done the lazy thing.
llvm-svn: 130669