This streamlines the implementation and makes it so that the virtual tables are in the binary instead of dynamically assembled during initialization.
The dynamic allocation size of op registration is also smaller with this
change.
Differential Revision: https://reviews.llvm.org/D141492
Ops that use TypesMatchWith to constrain result types for verification
and to infer result types during parser generation should also be able
to have the `inferReturnTypes` method auto generated. This patch
upgrades the logic for generating `inferReturnTypes` to handle the
TypesMatchWith trait by building a type inference graph where each edge
corresponds to "type of A can be inferred from type of B", supporting
transformers other than `"$_self"`.
Reviewed By: lattner, rriddle
Differential Revision: https://reviews.llvm.org/D141231
This is part of the RFC for a better fold API: https://discourse.llvm.org/t/rfc-a-better-fold-api-using-more-generic-adaptors/67374
This patch implements the required foldHook changes and the TableGen machinery for generating `fold` method signatures using `FoldAdaptor` for ops, based on the value of `useFoldAPI` of the dialect. It may be one of 2 values, with convenient named constants to create a quasi enum. The new `fold` method will then be generated if `kEmitFoldAdaptorFolder` is used.
Since the new `FoldAdaptor` approach is strictly better than the old signature, part of this patch updates the documentation and all example to encourage use of the new `fold` signature.
Included are also tests exercising the new API, ensuring proper construction of the `FoldAdaptor` and proper generation by TableGen.
Differential Revision: https://reviews.llvm.org/D140886
This is part of the RFC for a better fold API: https://discourse.llvm.org/t/rfc-a-better-fold-api-using-more-generic-adaptors/67374
This patch implements the generation of generic adaptors through TableGen. These are essentially a generalization of Adaptors, as implemented previously, but instead of indexing into a `mlir::ValueRange`, they may index into any container, regardless of the element type. This allows the use of the convenient getter methods of Adaptors to be reused on ranges that are the result of some kind of mapping functions of an ops operands.
In the case of the fold API in the RFC, this would be `ArrayRef<Attribute>`, which is a mapping of the operands to their possibly-constant values.
Implementation wise, some special care was taken to not cause a compile time regression, nor to break any kind of source compatibility.
For that purpose, the current adaptor class was split into three:
* A generic adaptor base class, within the detail namespace as it is an implementation detail, which implements all APIs independent of the range type used for the operands. This is all the attribute and region related code. Since it is not templated, its implementation does not have to be inline and can be put into the cpp source file
* The actual generic adaptor, which has a template parameter for the range that should be indexed into for retrieving operands. It implements all the getters for operands, as they are dependent on the range type. It publicly inherits from the generic adaptor base class
* A class named as adaptors have been named so far, inheriting from the generic adaptor class with `mlir::ValueRange` as range to index into. It implements the rest of the API, specific to `mlir::ValueRange` adaptors, which have previously been part of the adaptor. This boils down to a constructor from the Op type as well as the verify function.
The last class having the exact same API surface and name as Adaptors did previously leads to full source compatibility.
Differential Revision: https://reviews.llvm.org/D140660
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
The remove*Attr methods were not being generated with the correct
camelcase method.
Depends on D139470
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D139471
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This allows for setting an attribute using the underlying C++ type,
which is generally much nicer to interact with than the attribute type.
Differential Revision: https://reviews.llvm.org/D135838
This patch makes ODS insert an assert when calling static `get*AttrName`
methods with a `OperationName` that the name is the same as the op's.
This prevents accidentally passing the wrong kind of name and getting an
erroneous attribute name.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D135698
UnitAttr is optional but unwrapped builders require it. Make Change onstructing
from bool as required for when not set at moment (for UnitAttr nothing needs to
be constructed, this is true for others here too and can be addressed
together).
Differential Revision: https://reviews.llvm.org/D135058
I'm planning to deprecate and eventually remove llvm::empty.
Note that no use of llvm::empty requires the ability of llvm::empty to
determine the emptiness from begin/end only.
mlir::TypedValue is a wrapper class for mlir::Values with a known type
getType will return the known type and all assignements will be checked
Also the tablegen Operation generator was adapted to use mlir::TypedValue
when appropriate
When using multiple variadic results of differing sizes, using `AttrSizedResultSegments` is currently a requirement. Unlike `AttrSizedOperandSegments` however, it is not created within the default builders created by tablegen. Instead, one has to explicitly add `DenseI32ArrayAttr:$result_segments_sizes` as argument and then also explicitly specify all the sizes when using the builder from C++.
This patch fixes that redundancy, by making the builder generate the attribute in similar fashion as it already does for `AttrSizedOperandSegments`. The sizes required are simply gathered from the result type arguments of the builder.
Differential Revision: https://reviews.llvm.org/D132656
Default attributes were only handled by ODS accessors generated with the
intention that these behave as if set attributes. This addresses the
long standing TODO to address this inconsistency. Moving the
initialization to construction vs every access. Removing need for
duplicated default attribute population in python bindings.
Switch some of the OpenMP ones to optional attribute with default as the
currently set default values are not legal. May need to dig more there.
Switched LinAlg generated ones to optional attribute with default as its
quite widely used and unclear where it falls on two different
interpretations.
Differential Revision: https://reviews.llvm.org/D130916
OptionalAttr does the wrapping with Optional explicitly in ODS while
default valued optional attribute doesn't (and follows DefaultValuedAttr
in this behavior/meant as drop-in for updating old behavior), update
when to emit check for non-null to account for this. Also add variant
for optional default valued string attribute to have same convenience as
default valued string attribute.
This reland includes changes to the Python bindings.
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131801
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D131803
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131738
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D131702
This patch removes the `type` field from `Attribute` along with the
`Attribute::getType` accessor.
Going forward, this means that attributes in MLIR will no longer have
types as a first-class concept. This patch lays the groundwork to
incrementally remove or refactor code that relies on generic attributes
being typed. The immediate impact will be on attributes that rely on
`Attribute` containing a type, such as `IntegerAttr`,
`DenseElementsAttr`, and `ml_program::ExternAttr`, which will now need
to define a type parameter on their storage classes. This will save
memory as all other attribute kinds will no longer contain a type.
Moreover, it will not be possible to generically query the type of an
attribute directly. This patch provides an attribute interface
`TypedAttr` that implements only one method, `getType`, which can be
used to generically query the types of attributes that implement the
interface. This interface can be used to retain the concept of a "typed
attribute". The ODS-generated accessor for a `type` parameter
automatically implements this method.
Next steps will be to refactor the assembly formats of certain operations
that rely on `parseAttribute(type)` and `printAttributeWithoutType` to
remove special handling of type elision until `type` can be removed from
the dialect parsing hook entirely; and incrementally remove uses of
`TypedAttr`.
Reviewed By: lattner, rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D130092
Previously default attributes were only usable by way of the ODS generated
accessors, but this was undesirable as
1. The ODS getters could construct Attribute each get request;
2. For non-C++ uses this would require either duplicating some of tee default
attribute generating or generating additional bindings to generate methods;
3. Accessing op.getAttr("foo") and op.getFoo() would return different results;
Generate method to populate default attributes that can be used to address
these.
This merely adds this facility but does not employ by default on any path.
Differential Revision: https://reviews.llvm.org/D128962
With the exceptions of AttrOrTypeParameter and DerivedAttr, all of MLIR consistently uses $_ctxt as the substitute variable for the MLIRContext in TableGen C++ code.
Usually this does not matter unless one where to reuse some code in multiple fields but it is still needlessly inconsistent and prone to error.
This patch fixes that by consistently using _$ctxt everywhere.
Differential Revision: https://reviews.llvm.org/D129153
This allows for using attribute types in result type inference for use with
InferTypeOpInterface. This was a TODO before, but it isn't much
additional work to properly support this. After this commit,
arith::ConstantOp can now have its InferTypeOpInterface implementation automatically
generated.
Differential Revision: https://reviews.llvm.org/D124580
This diff causes mlir-tblgen to generate code for an additional builder for an
operation argument with a return type that can be inferred *AND* an attribute in
the argument list can be "unwrapped." (Previously, the unwrapped build function
was only generated for builders with explicit return types in separate or
aggregate form.) As an example, this builder might be used by code that creates
operations that implement the `SameOperandsAndResultType` interface. A test case
was created.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D124043
This patch contains several ODS-level optimizations to attribute getters and getting.
1. OpAdaptors, when provided a DictionaryAttr, will instantiate an OperationName so that adaptor attribute getters can used cached identifiers.
2. Verifiers will take advantage of attributes stored in sorted order to get all required (non-optional, non-default valued, and non-derived) attributes in one pass over the attribute dictionary and verify that they are present.
3. ODS-generated attribute getters will use "subrange" lookup. Because the attributes are stored in sorted order and ODS knows which attributes are required, the number of required attributes less than and greater than each attribute can be computed. When searching for an attribute, the ends of the search range can be dropped.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D122430
This commit restructures how TypeID is implemented to ideally avoid
the current problems related to shared libraries. This is done by changing
the "implicit" fallback path to use the name of the type, instead of using
a static template variable (which breaks shared libraries). The major downside to this
is that it adds some additional initialization costs for the implicit path. Given the
use of type names for uniqueness in the fallback, we also no longer allow types
defined in anonymous namespaces to have an implicit TypeID. To simplify defining
an ID for these classes, a new `MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID` macro
was added to allow for explicitly defining a TypeID directly on an internal class.
To help identify when types are using the fallback, `-debug-only=typeid` can be
used to log which types are using implicit ids.
This change generally only requires changes to the test passes, which are all defined
in anonymous namespaces, and thus can't use the fallback any longer.
Differential Revision: https://reviews.llvm.org/D122775
Allow default-valued attributes to be passed as null to builders, which will not add the attribute if not present, so the default value will be returned by getters.
In this CL, update the function name of verifier according to the
behavior. If a verifier needs to access the region then it'll be updated
to `verifyRegions`.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D120373
This change gives explicit order of verifier execution and adds
`hasRegionVerifier` and `verifyWithRegions` to increase the granularity
of verifier classification. The orders are as below,
1. InternalOpTrait will be verified first, they can be run independently.
2. `verifyInvariants` which is constructed by ODS, it verifies the type,
attributes, .etc.
3. Other Traits/Interfaces that have marked their verifier as
`verifyTrait` or `verifyWithRegions=0`.
4. Custom verifier which is defined in the op and has marked
`hasVerifier=1`
If an operation has regions, then it may have the second phase,
5. Traits/Interfaces that have marked their verifier as
`verifyRegionTrait` or
`verifyWithRegions=1`. This implies the verifier needs to access the
operations in its regions.
6. Custom verifier which is defined in the op and has marked
`hasRegionVerifier=1`
Note that the second phase will be run after the operations in the
region are verified. Based on the verification order, you will be able to
avoid verifying duplicate things.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D116789
ODS provides a mechanism for defalut-valued attributes based on a wrapper
TableGen class that is recognized by mlir-tblgen. Such attributes, if not set
on the operaiton, can be construted on-the-fly in their getter given a constant
value. In order for this construction to work, the attribute specificaiton in
ODS must set the constBuilderCall field correctly. This has not been verified,
which could lead to invalid C++ code being generated by mlir-tblgen.
Closes#53588.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D119113
Currently if an operation wants a C++ implemented parser/printer, it specifies inline
code blocks. This is quite problematic for various reasons, e.g. it requires defining
C++ inside of Tablegen which is discouraged when possible, but mainly because
nearly all usages simply forward to static functions (e.g. `static void parseSomeOp(...)`)
with users devising their own standards for how these are defined.
This commit adds support for a `hasCustomAssemblyFormat` bit field that specifies if
a C++ parser/printer is needed, and when set to 1 declares the parse/print methods for
operations to override. For migration purposes, the existing behavior is untouched. Upstream
usages will be replaced in a followup to keep this patch focused on the new implementation.
Differential Revision: https://reviews.llvm.org/D119054
Currently if an operation requires additional verification, it specifies an inline
code block (`let verifier = "blah"`). This is quite problematic for various reasons, e.g.
it requires defining C++ inside of Tablegen which is discouraged when possible, but mainly because
nearly all usages simply forward to a static function `static LogicalResult verify(SomeOp op)`.
This commit adds support for a `hasVerifier` bit field that specifies if an additional verifier
is needed, and when set to `1` declares a `LogicalResult verify()` method for operations to
override. For migration purposes, the existing behavior is untouched. Upstream usages will
be replaced in a followup to keep this patch focused on the hasVerifier implementation.
One main user facing change is that what was one `MyOp::verify` is now `MyOp::verifyInvariants`.
This better matches the name this method is called everywhere else, and also frees up `verify` for
the user defined additional verification. The `verify` function when generated now (for additional
verification) is private to the operation class, which should also help avoid accidental usages after
this switch.
Differential Revision: https://reviews.llvm.org/D118742
Also make the ODS Operator class have const iterator, and use const
references for existing API taking Operator by reference.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D117516
The names of the generated attribute getters for ops changed some time ago. The method created from the attribute name returns the return type and an additional method of the same name with Attr as suffix is generated which returns the actual attribute as its storage type.
The code generating effects however was using the methods without the Attr suffix, which is a problem in the case of FlatSymbolRefAttr as it has a return type of llvm::StringRef. This would lead to compilation errors as the constructor of SideEffects::EffectInstance expects a SymbolRefAttr in this case.
This patch simply fixes the generated effects code to use the Attr suffixed getter to get the actual storage type of the attribute.
Differential Revision: https://reviews.llvm.org/D117194
Extra definitions are placed in the generated source file for each op class. The substitution `$cppClass` is replaced by the op's C++ class name.
This is useful when declaring but not defining methods in TableGen base classes:
```
class BaseOp<string mnemonic>
: Op<MyDialect, mnemonic, [DeclareOpInterfaceMethods<SomeInterface>] {
let extraClassDeclaration = [{
// ZOp is declared at at the bottom of the file and is incomplete here
ZOp getParent();
}];
let extraClassDefinition = [{
int $cppClass::someInterfaceMethod() {
return someUtilityFunction(*this);
}
ZOp $cppClass::getParent() {
return dyn_cast<ZOp>(this->getParentOp());
}
}];
}
```
Certain things may prevent defining these functions inline, in the declaration. In this example, `ZOp` in the same dialect is incomplete at the function declaration because ops classes are declared in alphabetical order. Alternatively, functions may be too big to be desired as inlined, or they may require dependencies that create cyclic includes, or they may be calling a templated utility function that one may not want to expose in a header. If the functions are not inlined, then inheriting from the base class N times means that each function will need to be defined N times. With `extraClassDefinitions`, they only need to be defined once.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D115783
Each attribute has two accessor: one suffixed with `Attr` which returns the attribute itself
and one without the suffix which unwrap the attribute.
For example for a StringAttr attribute with a field named `kind`, we'll generate:
StringAttr getKindAttr();
StringRef getKind();
Differential Revision: https://reviews.llvm.org/D116466