Avoid calling getenv in the MC layer and let the clang driver do it so
that it is reflected in the command-line as an -mllvm option.
rdar://101558354
Differential Revision: https://reviews.llvm.org/D136888
Restore GlobalsAA if sanitizers inserted at early optimize callback.
The analysis can be useful for the following FunctionPassManager.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D133537
Set the EmulatedTLS option based on `Triple::hasDefaultEmulatedTLS()`
if the user didn't specify it; set `ExplicitEmulatedTLS` to true
in `llvm::TargetOptions` and set `EmulatedTLS` to Clang's
opinion of what the default or preference is.
This avoids any risk of deviance between the two.
This affects one check of `getCodeGenOpts().EmulatedTLS` in
`shouldAssumeDSOLocal` in CodeGenModule, but as that check only
is done for `TT.isWindowsGNUEnvironment()`, and
`hasDefaultEmulatedTLS()` returns false for such environments
it doesn't make any current testable difference - thus NFC.
Some mingw distributions carry a downstream patch, that enables
emulated TLS by default for mingw targets in `hasDefaultEmulatedTLS()`
- and for such cases, this patch does make a difference and fixes the
detection of emulated TLS, if it is implicitly enabled.
Differential Revision: https://reviews.llvm.org/D132916
Introduces the frontend flag -fexperimental-sanitize-metadata=, which
enables SanitizerBinaryMetadata instrumentation.
The first intended user of the binary metadata emitted will be a variant
of GWP-TSan [1]. The plan is to open source a stable and production
quality version of GWP-TSan. The development of which, however, requires
upstream compiler support.
[1] https://llvm.org/devmtg/2020-09/slides/Morehouse-GWP-Tsan.pdf
Until the tool has been open sourced, we mark this kind of
instrumentation as "experimental", and reserve the option to change
binary format, remove features, and similar.
Reviewed By: vitalybuka, MaskRay
Differential Revision: https://reviews.llvm.org/D130888
Debugify in OriginalDebugInfo mode, introduced with D82545,
runs only with legacy PassManager.
This patch enables this utility for the NewPM.
Differential Revision: https://reviews.llvm.org/D115351
Now that we have the sanitizer metadata that is actually on the global
variable, and now that we use debuginfo in order to do symbolization of
globals, we can delete the 'llvm.asan.globals' IR synthesis.
This patch deletes the 'location' part of the __asan_global that's
embedded in the binary as well, because it's unnecessary. This saves
about ~1.7% of the optimised non-debug with-asserts clang binary.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D127911
Previously, omitting unnecessary DWARF unwinds was only done in two
cases:
* For Darwin + aarch64, if no DWARF unwind info is needed for all the
functions in a TU, then the `__eh_frame` section would be omitted
entirely. If any one function needed DWARF unwind, then MC would emit
DWARF unwind entries for all the functions in the TU.
* For watchOS, MC would omit DWARF unwind on a per-function basis, as
long as compact unwind was available for that function.
This diff makes it so that we omit DWARF unwind on a per-function basis
for Darwin + aarch64 as well. In addition, we introduce the flag
`--emit-dwarf-unwind=` which can toggle between `always`,
`no-compact-unwind` (only emit DWARF when CU cannot be emitted for a
given function), and the target platform `default`. `no-compact-unwind`
is particularly useful for newer x86_64 platforms: we don't want to omit
DWARF unwind for x86_64 in general due to possible backwards compat
issues, but we should make it possible for people to opt into this
behavior if they are only targeting newer platforms.
**Motivation:** I'm working on adding support for `__eh_frame` to LLD,
but I'm concerned that we would suffer a perf hit. Processing compact
unwind is already expensive, and that's a simpler format than EH frames.
Given that MC currently produces one EH frame entry for every compact
unwind entry, I don't think processing them will be cheap. I tried to do
something clever on LLD's end to drop the unnecessary EH frames at parse
time, but this made the code significantly more complex. So I'm looking
at fixing this at the MC level instead.
**Addendum:** It turns out that there was a latent bug in the X86
backend when `OmitDwarfIfHaveCompactUnwind` is naively enabled, which is
not too surprising given that this combination has not been heretofore
used.
For functions that have unwind info that cannot be encoded with CU, MC
would end up dropping both the compact unwind entry (OK; existing
behavior) as well as the DWARF entries (not OK). This diff fixes things
so that we emit the DWARF entry, as well as a CU entry with encoding
`UNWIND_X86_MODE_DWARF` -- this basically tells the unwinder to look for
the DWARF entry. I'm not 100% sure the `UNWIND_X86_MODE_DWARF` CU entry
is necessary, this was the simplest fix. ld64 seems to be able to handle
both the absence and presence of this CU entry. Ultimately ld64 (and
LLD) will synthesize `UNWIND_X86_MODE_DWARF` if it is absent, so there
is no impact to the final binary size.
Reviewed By: davide, lhames
Differential Revision: https://reviews.llvm.org/D122258
We use the `OffloadBinary` to create binary images of offloading files
and their corresonding metadata. This patch changes this to inherit from
the base `Binary` class. This allows us to create and insepect these
more generically. This patch includes all the necessary glue to
implement this as a new binary format, along with added the magic bytes
we use to distinguish the offloading binary to the `file_magic`
implementation.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D126812
In order to do offloading compilation we need to embed files into the
host and create fatbainaries. Clang uses a special binary format to
bundle several files along with their metadata into a single binary
image. This is currently performed using the `-fembed-offload-binary`
option. However this is not very extensibile since it requires changing
the command flag every time we want to add something and makes optional
arguments difficult. This patch introduces a new tool called
`clang-offload-packager` that behaves similarly to CUDA's `fatbinary`.
This tool takes several input files with metadata and embeds it into a
single image that can then be embedded in the host.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D125165
Default behavior for .file directory was changed in D105856, but
ptxas (CUDA 11.5 release) refuses to parse it:
$ llc -march=nvptx64 llvm/test/DebugInfo/NVPTX/debug-file-loc.ll
$ ptxas debug-file-loc.s
ptxas debug-file-loc.s, line 42; fatal : Parsing error near
'"foo.h"': syntax error
Added a new field to MCAsmInfo to control default value of
UseDwarfDirectory. This value is used if -dwarf-directory command line
option is not specified.
Differential Revision: https://reviews.llvm.org/D121299
The legacy passes are deprecated now and would be removed in near
future. This patch tries to remove legacy passes in coroutines.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D123918
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
The previous patch introduced the offloading binary format so we can
store some metada along with the binary image. This patch introduces
using this inside the linker wrapper and Clang instead of the previous
method that embedded the metadata in the section name.
Differential Revision: https://reviews.llvm.org/D122683
This removes the -flegacy-pass-manager and
-fno-experimental-new-pass-manager options, and the corresponding
support code in BackendUtil. The -fno-legacy-pass-manager and
-fexperimental-new-pass-manager options are retained as no-ops.
Differential Revision: https://reviews.llvm.org/D123609
The code to check if the regular LTO summary should be emitted and to
add the corresponding module flags was duplicated in the
'EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager' and
'EmitAssemblyHelper::RunOptimizationPipeline' methods.
In order to eliminate these code duplications, the
'EmitAssemblyHelper::shouldEmitRegularLTOSummary' method has been
extracted. The method returns a bool value, the value is 'true' if the
module summary should be emitted. The patch keeps the setting of the
module flags inline.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D123026
Few times in different methods of the EmitAssemblyHelper class the following
code snippet is used to get the TargetTriple and then use it's single method
to check some conditions:
TargetTriple(TheModule->getTargetTriple())
The parsing of a target triple string is not a trivial operation and it takes
time to repeat the parsing many times in different methods of the class and
even numerous times in one method just to call a getter
(llvm::Triple(TheModule->getTargetTriple()).getVendor()), for example.
The patch extracts the TargetTriple member of the EmitAssemblyHelper class to
parse the triple only once in the class' constructor.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D122587
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D115907
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121736
Before we start addressing the issue with having
a lot of false positives when using debugify in
the original mode, we have made a few patches that
should speed up the execution of the testing
utility Passes.
For example, when testing a large project
(let's say LLVM project itself), we can face
a lot of potential DI issues. Usually, we use
-verify-each-debuginfo-preserve (that is very
similar to -debugify-each) -- it collects
DI metadata before each Pass, and after the Pass
it checks if the Pass preserved the DI metadata.
However, we can speed up this process, since we
don't need to collect DI metadata before each
Pass -- we could use the DI metadata that are
collected after the previous Pass from
the pipeline as an input for the next Pass.
This patch speeds up the utility for ~2x.
Differential Revision: https://reviews.llvm.org/D115622
Reimplements MisExpect diagnostics from D66324 to reconstruct its
original checking methodology only using MD_prof branch_weights
metadata.
New checks rely on 2 invariants:
1) For frontend instrumentation, MD_prof branch_weights will always be
populated before llvm.expect intrinsics are lowered.
2) for IR and sample profiling, llvm.expect intrinsics will always be
lowered before branch_weights are populated from the IR profiles.
These invariants allow the checking to assume how the existing branch
weights are populated depending on the profiling method used, and emit
the correct diagnostics. If these invariants are ever invalidated, the
MisExpect related checks would need to be updated, potentially by
re-introducing MD_misexpect metadata, and ensuring it always will be
transformed the same way as branch_weights in other optimization passes.
Frontend based profiling is now enabled without using LLVM Args, by
introducing a new CodeGen option, and checking if the -Wmisexpect flag
has been passed on the command line.
Differential Revision: https://reviews.llvm.org/D115907
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121736
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121327
Summary:
We use a section to embed offloading code into the host for later
linking. This is normally unique to the translation unit as it is thrown
away during linking. However, if the user performs a relocatable link
the sections will be merged and we won't be able to access the files
stored inside. This patch changes the section variables to have external
linkage and a name defined by the section name, so if two sections are
combined during linking we get an error.
-fdata-sections decides whether global variables go into different sections.
This is orthogonal to whether we place their metadata (`.data` or `asan_globals`) into different sections.
With -fno-data-sections, `-fsanitize-address-globals-dead-stripping` can still:
* deduplicate COMDAT `asan.module_ctor` and `asan.module_dtor`
* (with ld --gc-sections): for a data section (e.g. `.data`), if all global variables defined relative to it are unreferenced, discard them and associated `asan_globals` sections (rare but no need to exclude this case)
Similar to c7b90947bd0179d914fea56b52be545c8f60f20a for PE/COFF.
Reviewed By: #sanitizers, kstoimenov, vitalybuka
Differential Revision: https://reviews.llvm.org/D120394
This relands commit b380a31de084a540cfa38b72e609b25ea0569bb7.
Restrict the tests to Windows only since the flag symbol hash depends on
system-dependent path normalization.
The introduction and some examples are on this page:
https://devblogs.microsoft.com/cppblog/announcing-jmc-stepping-in-visual-studio/
The `/JMC` flag enables these instrumentations:
- Insert at the beginning of every function immediately after the prologue with
a call to `void __fastcall __CheckForDebuggerJustMyCode(unsigned char *JMC_flag)`.
The argument for `__CheckForDebuggerJustMyCode` is the address of a boolean
global variable (the global variable is initialized to 1) with the name
convention `__<hash>_<filename>`. All such global variables are placed in
the `.msvcjmc` section.
- The `<hash>` part of `__<hash>_<filename>` has a one-to-one mapping
with a directory path. MSVC uses some unknown hashing function. Here I
used DJB.
- Add a dummy/empty COMDAT function `__JustMyCode_Default`.
- Add `/alternatename:__CheckForDebuggerJustMyCode=__JustMyCode_Default` link
option via ".drectve" section. This is to prevent failure in
case `__CheckForDebuggerJustMyCode` is not provided during linking.
Implementation:
All the instrumentations are implemented in an IR codegen pass. The pass is placed immediately before CodeGenPrepare pass. This is to not interfere with mid-end optimizations and make the instrumentation target-independent (I'm still working on an ELF port in a separate patch).
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D118428
D116542 adds EmbedBufferInModule which introduces a layer violation
(https://llvm.org/docs/CodingStandards.html#library-layering).
See 2d5f857a1eaf5f7a806d12953c79b96ed8952da8 for detail.
EmbedBufferInModule does not use BitcodeWriter functionality and should be moved
LLVMTransformsUtils. While here, change the function case to the prevailing
convention.
It seems that EmbedBufferInModule just follows the steps of
EmbedBitcodeInModule. EmbedBitcodeInModule calls WriteBitcodeToFile but has IR
update operations which ideally should be refactored to another library.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118666