This allows the input section matching algorithm to be separated from
output section descriptions. This allows a group of sections to be
assigned to multiple output sections, providing an explicit version of
--enable-non-contiguous-regions's spilling that doesn't require altering
global linker script matching behavior with a flag. It also makes the
linker script language more expressive even if spilling is not intended,
since input section matching can be done in a different order than
sections are placed in an output section.
The implementation reuses the backend mechanism provided by
--enable-non-contiguous-regions, so it has roughly similar semantics and
limitations. In particular, sections cannot be spilled into or out of
INSERT, OVERWRITE_SECTIONS, or /DISCARD/. The former two aren't
intrinsic, so it may be possible to relax those restrictions later.
When enabled, input sections that would otherwise overflow a memory
region are instead spilled to the next matching output section.
This feature parallels the one in GNU LD, but there are some differences
from its documented behavior:
- /DISCARD/ only matches previously-unmatched sections (i.e., the flag
does not affect it).
- If a section fails to fit at any of its matches, the link fails
instead of discarding the section.
- The flag --enable-non-contiguous-regions-warnings is not implemented,
as it exists to warn about such occurrences.
The implementation places stubs at possible spill locations, and
replaces them with the original input section when effecting spills.
Spilling decisions occur after address assignment. Sections are spilled
in reverse order of assignment, with each spill naively decreasing the
size of the affected memory regions. This continues until the memory
regions are brought back under size. Spilling anything causes another
pass of address assignment, and this continues to fixed point.
Spilling after rather than during assignment allows the algorithm to
consider the size effects of unspillable input sections that appear
later in the assignment. Otherwise, such sections (e.g. thunks) may
force an overflow, even if spilling something earlier could have avoided
it.
A few notable feature interactions occur:
- Stubs affect alignment, ONLY_IF_RO, etc, broadly as if a copy of the
input section were actually placed there.
- SHF_MERGE synthetic sections use the spill list of their first
contained input section (the one that gives the section its name).
- ICF occurs oblivious to spill sections; spill lists for merged-away
sections become inert and are removed after assignment.
- SHF_LINK_ORDER and .ARM.exidx are ordered according to the final
section ordering, after all spilling has completed.
- INSERT BEFORE/AFTER and OVERWRITE_SECTIONS are explicitly disallowed.
When enabled, input sections that would otherwise overflow a memory
region are instead spilled to the next matching output section.
This feature parallels the one in GNU LD, but there are some differences
from its documented behavior:
- /DISCARD/ only matches previously-unmatched sections (i.e., the flag
does not affect it).
- If a section fails to fit at any of its matches, the link fails
instead of discarding the section.
- The flag --enable-non-contiguous-regions-warnings is not implemented,
as it exists to warn about such occurrences.
The implementation places stubs at possible spill locations, and
replaces them with the original input section when effecting spills.
Spilling decisions occur after address assignment. Sections are spilled
in reverse order of assignment, with each spill naively decreasing the
size of the affected memory regions. This continues until the memory
regions are brought back under size. Spilling anything causes another
pass of address assignment, and this continues to fixed point.
Spilling after rather than during assignment allows the algorithm to
consider the size effects of unspillable input sections that appear
later in the assignment. Otherwise, such sections (e.g. thunks) may
force an overflow, even if spilling something earlier could have avoided
it.
A few notable feature interactions occur:
- Stubs affect alignment, ONLY_IF_RO, etc, broadly as if a copy of the
input section were actually placed there.
- SHF_MERGE synthetic sections use the spill list of their first
contained input section (the one that gives the section its name).
- ICF occurs oblivious to spill sections; spill lists for merged-away
sections become inert and are removed after assignment.
- SHF_LINK_ORDER and .ARM.exidx are ordered according to the final
section ordering, after all spilling has completed.
- INSERT BEFORE/AFTER and OVERWRITE_SECTIONS are explicitly disallowed.
For an output section with no input section, GNU ld eliminates the
output section when there are only symbol assignments (e.g.
`.foo : { symbol = 42; }`) but not for `.foo : { . += 42; }`
(`SHF_ALLOC|SHF_WRITE`).
We choose to retain such an output section with a symbol assignment
(unless unreferenced `PROVIDE`). We copy the previous section flag (see
https://reviews.llvm.org/D37736) to hopefully make the current PT_LOAD
segment extend to the current output section:
* decrease the number of PT_LOAD segments
* If a new PT_LOAD segment is introduced without a page-size
alignment as a separator, there may be a run-time crash.
However, this `flags` copying behavior is not suitable for
`.foo : { . += 42; }` when `flags` contains `SHF_EXECINSTR`. The
executable bit is surprising
(https://discourse.llvm.org/t/lld-output-section-flag-assignment-behavior/74359).
I think we should drop SHF_EXECINSTR when copying `flags`. The risk is a
code section followed by `.foo : { symbol = 42; }` will be broken, which
I believe is unrelated as such uses are almost always related to data
sections.
For data-command-only output sections (e.g. `.foo : { QUAD(42) }`), we
keep allowing copyable SHF_WRITE.
Some tests are updated to drop the SHF_EXECINSTR flag. GNU ld doesn't
set SHF_EXECINSTR as well, though it sets SHF_WRITE for some tests while
we don't.
Close#57618: currently we align the end of PT_GNU_RELRO to a
common-page-size
boundary, but do not align the end of the associated PT_LOAD. This is
benign
when runtime_page_size >= common-page-size.
However, when runtime_page_size < common-page-size, it is possible that
`alignUp(end(PT_LOAD), page_size) < alignDown(end(PT_GNU_RELRO),
page_size)`.
In this case, rtld's mprotect call for PT_GNU_RELRO will apply to
unmapped
regions and lead to an error, e.g.
```
error while loading shared libraries: cannot apply additional memory protection after relocation: Cannot allocate memory
```
To fix the issue, add a padding section .relro_padding like mold, which
is contained in the PT_GNU_RELRO segment and the associated PT_LOAD
segment. The section also prevents strip from corrupting PT_LOAD program
headers.
.relro_padding has the largest `sortRank` among RELRO sections.
Therefore, it is naturally placed at the end of `PT_GNU_RELRO` segment
in the absence of `PHDRS`/`SECTIONS` commands.
In the presence of `SECTIONS` commands, we place .relro_padding
immediately before a symbol assignment using DATA_SEGMENT_RELRO_END (see
also https://reviews.llvm.org/D124656), if present.
DATA_SEGMENT_RELRO_END is changed to align to max-page-size instead of
common-page-size.
Some edge cases worth mentioning:
* ppc64-toc-addis-nop.s: when PHDRS is present, do not append
.relro_padding
* avoid-empty-program-headers.s: when the only RELRO section is .tbss,
it is not part of PT_LOAD segment, therefore we do not append
.relro_padding.
---
Close#65002: GNU ld from 2.39 onwards aligns the end of PT_GNU_RELRO to
a
max-page-size boundary (https://sourceware.org/PR28824) so that the last
page is
protected even if runtime_page_size > common-page-size.
In my opinion, losing protection for the last page when the runtime page
size is
larger than common-page-size is not really an issue. Double mapping a
page of up
to max-common-page for the protection could cause undesired VM waste.
Internally
we had users complaining about 2MiB max-page-size applying to shared
objects.
Therefore, the end of .relro_padding is padded to a common-page-size
boundary. Users who are really anxious can set common-page-size to match
their runtime page size.
---
17 tests need updating as there are lots of change detectors.
The current output section type allows to set the ELF section type to
SHT_PROGBITS or SHT_NOLOAD. This patch allows an arbitrary section value
to be specified. Some common SHT_* literal names are supported as well.
```
SECTIONS {
note (TYPE=SHT_NOTE) : { BYTE(8) *(note) }
init_array ( TYPE=14 ) : { QUAD(14) }
fini_array (TYPE = SHT_FINI_ARRAY) : { QUAD(15) }
}
```
When `sh_type` is specified, it is an error if an input section has a different type.
Our syntax is compatible with GNU ld 2.39 (https://sourceware.org/bugzilla/show_bug.cgi?id=28841).
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D118840
This implements https://sourceware.org/bugzilla/show_bug.cgi?id=26404
An `OVERWRITE_SECTIONS` command is a `SECTIONS` variant which contains several
output section descriptions. The output sections do not have specify an order.
Similar to `INSERT [BEFORE|AFTER]`, `LinkerScript::hasSectionsCommand` is not
set, so the built-in rules (see `docs/ELF/linker_script.rst`) still apply.
`OVERWRITE_SECTIONS` can be more convenient than `INSERT` because it does not
need an anchor section.
The initial syntax is intentionally narrow to facilitate backward compatible
extensions in the future. Symbol assignments cannot be used.
This feature is versatile. To list a few usage:
* Use `section : { KEEP(...) }` to retain input sections under GC
* Define encapsulation symbols (start/end) for an output section
* Use `section : ALIGN(...) : { ... }` to overalign an output section (similar to ld64 `-sectalign`)
When an output section is specified by both `OVERWRITE_SECTIONS` and
`INSERT`, `INSERT` is processed after overwrite sections. To make this work,
this patch changes `InsertCommand` to use name based matching instead of pointer
based matching. (This may cause a difference when `INSERT` moves one output
section more than once. Such duplicate commands should not be used in practice
(seems that in GNU ld the output sections may just disappear).)
A linker script can be used without -T/--script. The traditional `SECTIONS`
commands are concatenated, so a wrong rule can be more noticeable from the
section order. This feature if misused can be less noticeable, just like
`INSERT`.
Differential Revision: https://reviews.llvm.org/D103303
PR46970: for `alias = aliasee`, the alias can be used in relocation processing
and on ARM st_type does affect Thumb interworking. It is thus desirable for the
alias to get the same st_type.
Note that the st_size field should not be inherited because some tools use
st_size=0 as a heuristic to detect aliases. Retaining st_size can thwart such
heuristics and cause aliases to be preferred over the original symbols.
Differential Revision: https://reviews.llvm.org/D86263
If neither AT(lma) nor AT>lma_region is specified,
D76995 keeps `lmaOffset` (LMA - VMA) if the previous section is in the
default LMA region.
This patch additionally checks that the two sections are in the same
memory region.
Add a test case derived from https://bugs.llvm.org/show_bug.cgi?id=45313
.mdata : AT(0xfb01000) { *(.data); } > TCM
// It is odd to make .bss inherit lmaOffset, because the two sections
// are in different memory regions.
.bss : { *(.bss) } > DDR
With this patch, section VMA/LMA match GNU ld. Note, GNU ld supports
out-of-order (w.r.t sh_offset) sections and places .text and .bss in the
same PT_LOAD. We don't have that behavior.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D81986
See `docs/ELF/linker_script.rst` for the new computation for sh_addr and sh_addralign.
`ALIGN(section_align)` now means: "increase alignment to section_align"
(like yet another input section requirement).
The "start of section .foo changes from 0x11 to 0x20" warning no longer
makes sense. Change it to warn if sh_addr%sh_addralign!=0.
To decrease the alignment from the default max_input_align,
use `.output ALIGN(8) : {}` instead of `.output : ALIGN(8) {}`
See linkerscript/section-address-align.test as an example.
When both an output section address and ALIGN are set (can be seen as an
"undefined behavior" https://sourceware.org/ml/binutils/2020-03/msg00115.html),
lld may align more than GNU ld, but it makes a linker script working
with GNU ld hard to break with lld.
This patch can be considered as restoring part of the behavior before D74736.
Differential Revision: https://reviews.llvm.org/D75724
LLD implements Linker Scripts as they are described in the GNU ld manual.
This description is far from a specification, with the only true reference
the GNU ld implementation, which has undocumented behaviour that can vary
from release to release.
To make it easy for people to switch between linkers we try to follow GNU
ld implementation details wherever possible. We reserve the right to make
our own decisions where the undocumented GNU ld behaviour is not
appropriate for LLD. We don't have a place to document these decisions and
it can be difficult for users to find out this information.
This file is a statement of the LLD implementation policy and will contain
intentional deviations from GNU ld.
The first patch that will add concrete details to this file is D75724
Differential Revision: https://reviews.llvm.org/D75921