Summary:
Implement SBProcessInfo to wrap lldb_private::ProcessInstanceInfo,
and add SBProcess::GetProcessInfo() to retrieve info like parent ID,
group ID, user ID etc. from a live process.
Differential Revision: https://reviews.llvm.org/D35881
llvm-svn: 309664
Summary:
- Added API to access data types
-- integer, double, array, string, boolean and dictionary data types
-- Earlier user had to parse through the string output to get these
values
- Added Test cases for API testing
- Added new StructuredDataType enum in public include file
-- Replaced locally-defined enum in StructuredData.h with this new
one
-- Modified other internal files using this locally-defined enum
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: clayborg, lldb-commits
Reviewed By: clayborg
Subscribers: labath
Differential Revision: https://reviews.llvm.org/D33434
llvm-svn: 304138
Summary:
There is nothing we can do with the breakpoint once the associated
target becomes deleted. This will make sure we don't hold on to more
resources than we need in this case. In particular, this fixes the case
TestStepOverBreakpoint on windows, where a lingering SBBreakpoint object
causes us to nor unmap the executable file from memory.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D30249
llvm-svn: 296328
Summary:
GCC emits also symbols for the __PRETTY_FUNCTION__ virtual variable,
which we accidentaly pick up when looking for functions for with
"unique_function_name" in the name. This makes the target.FindFunctions
call fail, as that symbol is not a function.
I also strenghten the test a bit to make sure we actually find all the
functions we are interested in. I've put a check that we find at least 6
functions, but maybe this should be *exactly* 6 ?
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D29932
llvm-svn: 295170
This test is flaky on the windows->android bot. Change assertTrue to
assertEqual in the hope better error messages will direct us to the
problem.
llvm-svn: 294737
It is a new attribute emitted by clang as a GNU extension and will
be part of Dwarf5. The purpose of the attribute is to specify a compile
unit level base value for all DW_AT_ranges to reduce the number of
relocations have to be done by the linker.
Fixes (at least partially): https://llvm.org/pr28826
Differential revision: https://reviews.llvm.org/D24514
llvm-svn: 281595
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Summary:
As this test will create a new target, it will cause all following tests
to fail when running in platform mode, if the new target does not match
the existing architecture (for example, x86 vs x86_64).
Reviewers: zturner, spyffe, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D21906
llvm-svn: 274364
If a lldbinline test's source file changed language, then the Makefile wasn't
updated. This was a problem if the Makefile was checked into the repository.
Now lldbinline.py always regenerates the Makefile and asserts if the
newly-generated version is not the same as the one already there. This ensures
that the repository will never be out of date without a buildbot failing.
http://reviews.llvm.org/D21032
llvm-svn: 272024
Remove XFAIL from some tests that now pass.
Add XFAIL to some tests that now fail.
Fix a crasher where a null pointer check isn't guarded.
Properly handle all types of errors in SymbolFilePDB.
llvm-svn: 269454
Some watchpoint tests fail on aarch64-linux as it lacks support for intalling watchpoints which are not alligned at 8bytes boundary.
Marking them as xfail for now.
llvm-svn: 269187
This change addresses a hang/segfault in TestEvents.py. The threads that
run the listener loops now do an SBListener.Clear() before they wrap up
their work. This prevents the test from trying to clean up the
SBListener too late.
There is a separate issue here which is that we should prevent this
clean-up time lock-up, but that is out of scope for this particular
change. I'd like to get these tests back and running the normal flow
rather than skipping them.
This addresses:
llvm.org/pr25924 (at least, the OS X side, although I suspect this will
also address Linux)
http://reviews.llvm.org/D19983
reviewed by: Jim Ingham
llvm-svn: 268653
Summary:
We were trying to get a DWARFDIE from a CompileUnit belonging to a DWO file. However, this
function does not understand the die encoding used by the DWO files. Instead use GetDIE on the
SymbolFileDWARF, which is overriden in DWO to do the right thing.
Reviewers: clayborg, tberghammer
Subscribers: lldb-commits, ovyalov
Differential Revision: http://reviews.llvm.org/D19927
llvm-svn: 268615
A number of test cases were failing on big-endian systems simply due to
byte order assumptions in the tests themselves, and no underlying bug
in LLDB.
These two test cases:
tools/lldb-server/lldbgdbserverutils.py
python_api/process/TestProcessAPI.py
actually check for big-endian target byte order, but contain Python errors
in the corresponding code paths.
These test cases:
functionalities/data-formatter/data-formatter-python-synth/TestDataFormatterPythonSynth.py
functionalities/data-formatter/data-formatter-smart-array/TestDataFormatterSmartArray.py
functionalities/data-formatter/synthcapping/TestSyntheticCapping.py
lang/cpp/frame-var-anon-unions/TestFrameVariableAnonymousUnions.py
python_api/sbdata/TestSBData.py (first change)
could be fixed to check for big-endian target byte order and update the
expected result strings accordingly. For the two synthetic tests, I've
also updated the source to make sure the fake_a value is always nonzero
on both big- and little-endian platforms.
These test case:
python_api/sbdata/TestSBData.py (second change)
functionalities/memory/cache/TestMemoryCache.py
simply accessed memory with the wrong size, which wasn't noticed on LE
but fails on BE.
Differential Revision: http://reviews.llvm.org/D18985
llvm-svn: 266315
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
The explicit APIs on SBValue obviously remain if one wants to be explicit in intent, or override this guess, but since __int__() has to pick one, an educated guess is definitely better than than always going to signed regardless
Fixes rdar://24556976
llvm-svn: 260349
expectedFailureWindows is equivalent to using the general
expectedFailureAll decorator with oslist="windows". Additionally,
by moving towards these common decorators we can solve the issue
of having to support decorators that can be called with or without
arguments. Once all decorators are always called with arguments,
and this is enforced by design (because you can't specify the condition
you're decorating for without passing an argument) the implementation
of the decorators can become much simpler
Differential Revision: http://reviews.llvm.org/D16936
llvm-svn: 260134
This doesn't attempt to move every decorator. The reason for
this is that it requires touching every single test file to import
decorators.py. I would like to do this in a followup patch, but
in the interest of keeping the patches as bite-sized as possible,
I've only attempted to move the underlying common decorators first.
A few tests call these directly, so those tests are updated as part
of this patch.
llvm-svn: 259807
previously, I have marked only one test as flaky, but now I noticed another test failing with the
same error. I am going to assume all of them are flaky.
llvm-svn: 259775