of the file name. This is consistent with how other HeaderSearchOptions
are handled.
Due to the other inputs of the module hash (revision number) this is not
really testable in a meaningful way.
llvm-svn: 257520
This patch attempts to fix the regressions identified when the patch was committed initially.
Thanks to Michael Liao for identifying the fix in the offloading metadata generation
related with side effects in evaluation of function arguments.
llvm-svn: 256933
Summary:
In order to offloading work properly two things need to be in place:
- a descriptor with all the offloading information (device entry functions, and global variable) has to be created by the host and registered in the OpenMP offloading runtime library.
- all the device functions need to be emitted for the device and a convention has to be in place so that the runtime library can easily map the host ID of an entry point with the actual function in the device.
This patch adds support for these two things. However, only entry functions are being registered given that 'declare target' directive is not yet implemented.
About offloading descriptor:
The details of the descriptor are explained with more detail in http://goo.gl/L1rnKJ. Basically the descriptor will have fields that specify the number of devices, the pointers to where the device images begin and end (that will be defined by the linker), and also pointers to a the begin and end of table whose entries contain information about a specific entry point. Each entry has the type:
```
struct __tgt_offload_entry{
void *addr;
char *name;
int64_t size;
};
```
and will be implemented in a pre determined (ELF) section `.omp_offloading.entries` with 1-byte alignment, so that when all the objects are linked, the table is in that section with no padding in between entries (will be like a C array). The code generation ensures that all `__tgt_offload_entry` entries are emitted in the same order for both host and device so that the runtime can have the corresponding entries in both host and device in same index of the table, and efficiently implement the mapping.
The resulting descriptor is registered/unregistered with the runtime library using the calls `__tgt_register_lib` and `__tgt_unregister_lib`. The registration is implemented in a high priority global initializer so that the registration happens always before any initializer (that can potentially include target regions) is run.
The driver flag -omptargets= was created to specify a comma separated list of devices the user wants to support so that the new functionality can be exercised. Each device is specified with its triple.
About target codegen:
The target codegen is pretty much straightforward as it reuses completely the logic of the host version for the same target region. The tricky part is to identify the meaningful target regions in the device side. Unlike other programming models, like CUDA, there are no already outlined functions with attributes that mark what should be emitted or not. So, the information on what to emit is passed in the form of metadata in host bc file. This requires a new option to pass the host bc to the device frontend. Then everything is similar to what happens in CUDA: the global declarations emission is intercepted to check to see if it is an "interesting" declaration. The difference is that instead of checking an attribute, the metadata information in checked. Right now, there is only a form of metadata to pass information about the device entry points (target regions). A class `OffloadEntriesInfoManagerTy` was created to manage all the information and queries related with the metadata. The metadata looks like this:
```
!omp_offload.info = !{!0, !1, !2, !3, !4, !5, !6}
!0 = !{i32 0, i32 52, i32 77426347, !"_ZN2S12r1Ei", i32 479, i32 13, i32 4}
!1 = !{i32 0, i32 52, i32 77426347, !"_ZL7fstatici", i32 461, i32 11, i32 5}
!2 = !{i32 0, i32 52, i32 77426347, !"_Z9ftemplateIiET_i", i32 444, i32 11, i32 6}
!3 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 99, i32 11, i32 0}
!4 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 272, i32 11, i32 3}
!5 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 127, i32 11, i32 1}
!6 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 159, i32 11, i32 2}
```
The fields in each metadata entry are (in sequence):
Entry 1) an ID of the type of metadata - right now only zero is used meaning "OpenMP target region".
Entry 2) a unique ID of the device where the input source file that contain the target region lives.
Entry 3) a unique ID of the file where the input source file that contain the target region lives.
Entry 4) a mangled name of the function that encloses the target region.
Entries 5) and 6) line and column number where the target region was found.
Entry 7) is the order the entry was emitted.
Entry 2) and 3) are required to distinguish files that have the same function name.
Entry 4) is required to distinguish different instances of the same declaration (usually templated ones)
Entries 5) and 6) are required to distinguish the particular target region in body of the function (it is possible that a given target region is not an entry point - if clause can evaluate always to zero - and therefore we need to identify the "interesting" target regions. )
This patch replaces http://reviews.llvm.org/D12306.
Reviewers: ABataev, hfinkel, tra, rjmccall, sfantao
Subscribers: FBrygidyn, piotr.rak, Hahnfeld, cfe-commits
Differential Revision: http://reviews.llvm.org/D12614
llvm-svn: 256842
The /Brepro flag controls whether or not the compiler should embed
timestamps into the object file. Object files which do not embed
timestamps are not suitable for incremental linking but are suitable for
hermetic build systems and staged self-hosts of clang.
A normal clang spelling of this flag has been added,
-mincremental-linker-compatible.
llvm-svn: 256204
Reapplies r256063, except instead of frugally re-using an LLVM enum,
we define a Clang enum, to avoid exposing too much LLVM interface.
Differential Revision: http://reviews.llvm.org/D15650
llvm-svn: 256078
Clang-side cross-DSO CFI.
* Adds a command line flag -f[no-]sanitize-cfi-cross-dso.
* Links a runtime library when enabled.
* Emits __cfi_slowpath calls is bitset test fails.
* Emits extra hash-based bitsets for external CFI checks.
* Sets a module flag to enable __cfi_check generation during LTO.
This mode does not yet support diagnostics.
llvm-svn: 255694
For PS4, generate explicit import for anonymous namespaces and mark it by DW_AT_artificial attribute.
Differential Revision: http://reviews.llvm.org/D12624
llvm-svn: 255281
Summary:
Adds new option -fthinlto-index=<file> to invoke the LTO pipeline
along with function importing via clang using the supplied function
summary index file. This supports invoking the parallel ThinLTO
backend processes in a distributed build environment via clang.
Additionally, this causes the module linker to be invoked on the bitcode
file being compiled to perform any necessary promotion and renaming of
locals that are exported via the function summary index file.
Add a couple tests that confirm we get expected errors when we try to
use the new option on a file that isn't bitcode, or specify an invalid
index file. The tests also confirm that we trigger the expected function
import pass.
Depends on D15024
Reviewers: joker.eph, dexonsmith
Subscribers: joker.eph, davidxl, cfe-commits
Differential Revision: http://reviews.llvm.org/D15025
llvm-svn: 254927
This flag causes all files that were read by the compilation to be embedded
into a produced module file. This is useful for distributed build systems that
use an include scanning system to determine which files are "needed" by a
compilation, and only provide those files to remote compilation workers. Since
using a module can require any file that is part of that module (or anything it
transitively includes), files that are not found by an include scanner can be
required in a regular build using explicit modules. With this flag, only files
that are actually referenced by transitively-#included files are required to be
present on the build machine.
llvm-svn: 253950
(Re-apply patch after bug fixing)
This diff makes sure that the driver does not pass
-fomit-frame-pointer or -momit-leaf-frame-pointer to
the frontend when -pg is used. Currently, clang gives
an error if -fomit-frame-pointer is used in combination
with -pg, but -momit-leaf-frame-pointer was forgotten.
Also, disable frame pointer elimination in the frontend
when -pg is set.
Patch by Stefan Kempf.
llvm-svn: 253886
This diff makes sure that the driver does not pass
-fomit-frame-pointer or -momit-leaf-frame-pointer to
the frontend when -pg is used. Currently, clang gives
an error if -fomit-frame-pointer is used in combination
with -pg, but -momit-leaf-frame-pointer was forgotten.
Also, disable frame pointer elimination in the frontend
when -pg is set.
Patch by Stefan Kempf.
llvm-svn: 253846
This reverts commit r253269.
This leads to assert / segfault triggering on the following reduced example:
float foo(float U, float base, float cell) { return (U = 2 * base) - cell; }
llvm-svn: 253337
This failed to solve the problem it was aimed at, and introduced just as many
issues as it resolved. Realistically, we need to deal with the possibility that
multiple modules might define different internal linkage symbols with the same
name, and this isn't a problem unless two such symbols are simultaneously
visible.
The case where two modules define equivalent internal linkage symbols is
handled by r252063: if lookup finds multiple sufficiently-similar entities from
different modules, we just pick one of them as an extension (but we keep them
separate).
llvm-svn: 252957
The -meabi flag to control LLVM EABI version.
Without '-meabi' or with '-meabi default' imply LLVM triple default.
With '-meabi gnu' sets EABI GNU.
With '-meabi 4' or '-meabi 5' set EABI version 4 and 5 respectively.
A similar patch was introduced in LLVM.
Patch by Vinicius Tinti.
llvm-svn: 252463
Introduce the notion of a module file extension, which introduces
additional information into a module file at the time it is built that
can then be queried when the module file is read. Module file
extensions are identified by a block name (which must be unique to the
extension) and can write any bitstream records into their own
extension block within the module file. When a module file is loaded,
any extension blocks are matched up with module file extension
readers, that are per-module-file and are given access to the input
bitstream.
Note that module file extensions can only be introduced by
programmatic clients that have access to the CompilerInvocation. There
is only one such extension at the moment, which is used for testing
the module file extension harness. As a future direction, one could
imagine allowing the plugin mechanism to introduce new module file
extensions.
llvm-svn: 251955
Linking options for particular file depend on the option that specifies the file.
Currently there are two:
* -mlink-bitcode-file links in complete content of the specified file.
* -mlink-cuda-bitcode links in only the symbols needed by current TU.
Linked symbols are internalized. This bitcode linking mode is used to
link device-specific bitcode provided by CUDA.
Files are linked in order they are specified on command line.
-mlink-cuda-bitcode replaces -fcuda-uses-libdevice flag.
Differential Revision: http://reviews.llvm.org/D13913
llvm-svn: 251427
Previously, __weak was silently accepted and ignored in MRC mode.
That makes this a potentially source-breaking change that we have to
roll out cautiously. Accordingly, for the time being, actual support
for __weak references in MRC is experimental, and the compiler will
reject attempts to actually form such references. The intent is to
eventually enable the feature by default in all non-GC modes.
(It is, of course, incompatible with ObjC GC's interpretation of
__weak.)
If you like, you can enable this feature with
-Xclang -fobjc-weak
but like any -Xclang option, this option may be removed at any point,
e.g. if/when it is eventually enabled by default.
This patch also enables the use of the ARC __unsafe_unretained qualifier
in MRC. Unlike __weak, this is being enabled immediately. Since
variables are essentially __unsafe_unretained by default in MRC,
the only practical uses are (1) communication and (2) changing the
default behavior of by-value block capture.
As an implementation matter, this means that the ObjC ownership
qualifiers may appear in any ObjC language mode, and so this patch
removes a number of checks for getLangOpts().ObjCAutoRefCount
that were guarding the processing of these qualifiers. I don't
expect this to be a significant drain on performance; it may even
be faster to just check for these qualifiers directly on a type
(since it's probably in a register anyway) than to do N dependent
loads to grab the LangOptions.
rdar://9674298
llvm-svn: 251041
The ELF symbol visibilities are:
- internal: Not visibile across DSOs, cannot pass address across DSOs
- hidden: Not visibile across DSOs, can be called indirectly
- default: Usually visible across DSOs, possibly interposable
- protected: Visible across DSOs, not interposable
LLVM only supports the latter 3 visibilities. Internal visibility is in
theory useful, as it allows you to assume that the caller is maintaining
a PIC register for you in %ebx, or in some other pre-arranged location.
As far as LLVM is concerned, this isn't worth the trouble. Using hidden
visibility is always correct, so we can just do that.
Resolves PR9183.
llvm-svn: 250954
Summary: It breaks the build for the ASTMatchers
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D13893
llvm-svn: 250827
This recommits r250398 with fixes to the tests for bot failures.
Add "-target x86_64-unknown-linux" to the clang invocations that
check for the gold plugin.
llvm-svn: 250455
Rolling this back for now since there are a couple of bot failures on
the new tests I added, and I won't have a chance to look at them in detail
until later this afternoon. I think the new tests need some restrictions on
having the gold plugin available.
This reverts commit r250398.
llvm-svn: 250402
Summary:
Add clang support for -flto=thin option, which is used to set the
EmitFunctionSummary code gen option on compiles.
Add -flto=full as an alias to the existing -flto.
Add tests to check for proper overriding of -flto variants on the
command line, and convert grep tests to FileCheck.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, cfe-commits
Differential Revision: http://reviews.llvm.org/D11908
llvm-svn: 250398
Add support for the `-fdebug-prefix-map=` option as in GCC. The syntax is
`-fdebug-prefix-map=OLD=NEW`. When compiling files from a path beginning with
OLD, change the debug info to indicate the path as start with NEW. This is
particularly helpful if you are preprocessing in one path and compiling in
another (e.g. for a build cluster with distcc).
Note that the linearity of the implementation is not as terrible as it may seem.
This is normally done once per file with an expectation that the map will be
small (1-2) entries, making this roughly linear in the number of input paths.
Addresses PR24619.
llvm-svn: 250094
With this change, most 'g' options are rejected by CompilerInvocation.
They remain only as Driver options. The new way to request debug info
from cc1 is with "-debug-info-kind={line-tables-only|limited|standalone}"
and "-dwarf-version={2|3|4}". In the absence of a command-line option
to specify Dwarf version, the Toolchain decides it, rather than placing
Toolchain-specific logic in CompilerInvocation.
Also fix a bug in the Windows compatibility argument parsing
in which the "rightmost argument wins" principle failed.
Differential Revision: http://reviews.llvm.org/D13221
llvm-svn: 249655
In versions of clang prior to r238238, __declspec was recognized as a keyword in
all modes. It was then changed to only be enabled when Microsoft or Borland
extensions were enabled (and for CUDA, as a temporary measure). There is a
desire to support __declspec in Playstation code, and possibly other
environments. This commit adds a command-line switch to allow explicit
enabling/disabling of the recognition of __declspec as a keyword. Recognition
is enabled by default in Microsoft, Borland, CUDA, and PS4 environments, and
disabled in all other environments.
Patch by Warren Ristow!
llvm-svn: 249279
* adds -aux-triple option to specify target triple
* propagates aux target info to AST context and Preprocessor
* pulls in target specific preprocessor macros.
* pulls in target-specific builtins from aux target.
* sets appropriate host or device attribute on builtins.
Differential Revision: http://reviews.llvm.org/D12917
llvm-svn: 248299
The patch makes it possible to parse CUDA files that contain host/device
functions with identical signatures, but different attributes without
having to physically split source into host-only and device-only parts.
This change is needed in order to parse CUDA header files that have
a lot of name clashes with standard include files.
Gory details are in design doc here: https://goo.gl/EXnymm
Feel free to leave comments there or in this review thread.
This feature is controlled with CC1 option -fcuda-target-overloads
and is disabled by default.
Differential Revision: http://reviews.llvm.org/D12453
llvm-svn: 248295
Summary:
Do not include default sanitizer blacklists into -M/-MM/-MD/-MMD output.
Introduce a frontend option -fdepfile-entry, and only insert them
for the user-defined sanitizer blacklists. In frontend, grab ExtraDeps
from -fdepfile-entry, instead of -fsanitize-blacklist.
Reviewers: rsmith, pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12544
llvm-svn: 246700
to enable the use of external type references in the debug info
(a.k.a. module debugging).
The driver expands -gmodules to "-g -fmodule-format=obj -dwarf-ext-refs"
and passes that to cc1. All this does at the moment is set a flag
codegenopts.
http://reviews.llvm.org/D11958
llvm-svn: 246192
file in the .pcm files. This allows a smaller set of files to be sent to a
remote build worker when building with explicit modules (for instance, module
map files need not be sent along with the corresponding precompiled modules).
This doesn't actually make the embedded files visible to header search, so
it's not useful as a packaging format for public header files.
llvm-svn: 245028
Summary:
Clang sanitizers, such as AddressSanitizer, ThreadSanitizer, MemorySanitizer,
Control Flow Integrity and others, use blacklists to specify which types / functions
should not be instrumented to avoid false positives or suppress known failures.
This change adds the blacklist filenames to the list of dependencies of the rules,
generated with -M/-MM/-MD/-MMD. This lets CMake/Ninja recognize that certain
C/C++/ObjC files need to be recompiled (if a blacklist is updated).
Reviewers: pcc
Subscribers: rsmith, honggyu.kim, pcc, cfe-commits
Differential Revision: http://reviews.llvm.org/D11968
llvm-svn: 244867