Closes https://github.com/llvm/llvm-project/issues/59780.
In this issue report, when we use full specialization of variable
templates in modules, we will meet the multiple definition errors.
The root cause of the problem is that when we see the full
specialization of the variable template in the importers, we will find
if it is already defined in the external sources and we failed to find
such definitions from external sources. So we generate the definition in
the current TU. We failed to find the definition in the external sources
because we restricted to not write it during writing. However, we don't
know why we restricted it and it doesn't make a lot sense to do such
restriction. Then no test fails after we remove such limitations. So
let's remove it now and add it back later if we found it is necessary
then we can add the corresponding test that time.
Note that the code is only applied to named modules and
PCHWithObjectFiles. So it won't affect the normal clang modules and
header units.
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This patch teaches clang to parse statements on the global scope to allow:
```
./bin/clang-repl
clang-repl> int i = 12;
clang-repl> ++i;
clang-repl> extern "C" int printf(const char*,...);
clang-repl> printf("%d\n", i);
13
clang-repl> %quit
```
Generally, disambiguating between statements and declarations is a non-trivial
task for a C++ parser. The challenge is to allow both standard C++ to be
translated as if this patch does not exist and in the cases where the user typed
a statement to be executed as if it were in a function body.
Clang's Parser does pretty well in disambiguating between declarations and
expressions. We have added DisambiguatingWithExpression flag which allows us to
preserve the existing and optimized behavior where needed and implement the
extra rules for disambiguating. Only few cases require additional attention:
* Constructors/destructors -- Parser::isConstructorDeclarator was used in to
disambiguate between ctor-looking declarations and statements on the global
scope(eg. `Ns::f()`).
* The template keyword -- the template keyword can appear in both declarations
and statements. This patch considers the template keyword to be a declaration
starter which breaks a few cases in incremental mode which will be tackled
later.
* The inline (and similar) keyword -- looking at the first token in many cases
allows us to classify what is a declaration.
* Other language keywords and specifiers -- ObjC/ObjC++/OpenCL/OpenMP rely on
pragmas or special tokens which will be handled in subsequent patches.
The patch conceptually models a "top-level" statement into a TopLevelStmtDecl.
The TopLevelStmtDecl is lowered into a void function with no arguments.
We attach this function to the global initializer list to execute the statement
blocks in the correct order.
Differential revision: https://reviews.llvm.org/D127284
Adds support for NamespaceDecl to inform if its part of a nested namespace.
This flag only corresponds to the inner namespaces in a nested namespace declaration.
In this example:
namespace <X>::<Y>::<Z> {}
Only <Y> and <Z> will be classified as nested.
This flag isn't meant for assisting in building the AST, more for static analysis and refactorings.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D90568
This patch is a NFC prep for D136624, where we start adjusting offsets into `SourceManager`.
Depends on D137213.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D137214
This reverts commit cecc9a92cfca71c1b6c2a35c5e302ab649496d11.
The problem ended up being how we were handling the lambda-context in
code generation: we were assuming any decl context here would be a
named-decl, but that isn't the case. Instead, we just replace it with
the concept's owning context.
Differential Revision: https://reviews.llvm.org/D136451
This reverts commit b876f6e2f28779211a829d7d4e841fe68885ae20.
Still getting build failures on PPC AIX that aren't obvious what is causing
them, so reverting while I try to figure this out.
This reverts commit b7c922607c5ba93db8b893d4ba461052af8317b5.
This seems to cause some problems with some modules related things,
which makes me think I should have updated the version-major in
ast-bit-codes? Going to revert to confirm this was a problem, then
change that and re-try a commit.
As that bug reports, the problem here is that the lambda's
'context-decl' was not set to the concept, and the lambda picked up
template arguments from the concept. SO, we failed to get the correct
template arguments in SemaTemplateInstantiate.
However, a Concept Specialization is NOT a decl, its an expression, so
we weren't able to put the concept in the decl tree like we needed.
This patch introduces a ConceptSpecializationDecl, which is the smallest
type possible to use for this purpose, containing only the template
arguments.
The net memory impliciation of this is turning a
trailing-objects into a pointer to a type with trailing-objects, so it
should be minor.
As future work, we may consider giving this type more responsibility, or
figuring out how to better merge duplicates, but as this is just a
template-argument collection at the moment, there isn't much value to
it.
Differential Revision: https://reviews.llvm.org/D136451
This is a change to how we represent type subsitution in the AST.
Instead of only storing the replaced type, we track the templated
entity we are substituting, plus an index.
We modify MLTAL to track the templated entity at each level.
Otherwise, it's much more expensive to go from the template parameter back
to the templated entity, and not possible to do in some cases, as when
we instantiate outer templates, parameters might still reference the
original entity.
This also allows us to very cheaply lookup the templated entity we saw in
the naming context and find the corresponding argument it was replaced
from, such as for implementing template specialization resugaring.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D131858
- store NestedNameSpecifier & Loc for the qualifiers
This information was entirely missing from the AST.
- expose the location information for qualifier/identifier/typedefs as typeloc
This allows many traversals/astmatchers etc to handle these generically along
with other references. The decl vs type split can help preserve typedef
sugar when https://github.com/llvm/llvm-project/issues/57659 is resolved.
- fix the SourceRange of UsingEnumDecl to include 'using'.
Fixes https://github.com/clangd/clangd/issues/1283
Differential Revision: https://reviews.llvm.org/D134303
Adds a fix to the diagnostic of replacing the `= default` to `= delete`
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D134549
This reverts commit 95d94a67755620c0a2871ac6f056ca8e9731d5e9.
This implements the deferred concepts instantiation, which should allow
the libstdc++ ranges to properly compile, and for the CRTP to work for
constrained functions.
Since the last attempt, this has fixed the issues from @wlei and
@mordante.
Differential Revision: https://reviews.llvm.org/D126907
This is first part for support cbuffer/tbuffer.
The format for cbuffer/tbuffer is
BufferType [Name] [: register(b#)] { VariableDeclaration [: packoffset(c#.xyzw)]; ... };
More details at https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-constants
New keyword 'cbuffer' and 'tbuffer' are added.
New AST node HLSLBufferDecl is added.
Build AST for simple cbuffer/tbuffer without attribute support.
The special thing is variables declared inside cbuffer is exposed into global scope.
So isTransparentContext should return true for HLSLBuffer.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D129883
In cases where a non-template function is defined inside a function
template, we don't have information about the original uninstantiated
version. In the case of concepts instantiation, we will need the
ability to get back to the original template. This patch splits a piece
of the deferred concepts instantaition patch off to accomplish the
storage of this, with minor runtime overhead, and zero additional
storage.
This reverts commit befa8cf087dbb8159a4d9dc8fa4d6748d6d5049a.
Apparently this breaks some libc++ builds with an apparent assertion,
so I'm looking into that .
This reverts commit d4d47e574ecae562ab32f8ac7fa3f4d424bb6574.
This fixes the lldb crash that was observed by ensuring that our
friend-'template contains reference to' TreeTransform properly handles a
TemplateDecl.
This reverts commit 2f207439521d62d9551b2884158368e8b34084e5 because it
triggers an assertion when building an LLDB test program:
Assertion failed: (InstantiatingSpecializations.empty() && "failed to
clean up an InstantiatingTemplate?"), function ~Sema, file
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/clang/lib/Sema/Sema.cpp,
line 458.
More details in https://reviews.llvm.org/D126907.
This reverts commit a425cac31e2e4cee8e14b7b9a99c8ba17c1ebb52.
There is another libc++ test, that this time causes us to hit an
assertion. Reverting, likely for a while this time.
This includes a fix for the libc++ issue I ran across with friend
declarations not properly being identified as overloads.
This reverts commit 45c07db31cc76802a1a2e41bed1ce9c1b8198181.
This reverts commit a97899108e495147985e5e9492e742d51d5cc97a.
The patch caused some problems with the libc++ `__range_adaptor_closure`
that I haven't been able to figure out the cause of, so I am reverting
while I figure out whether this is a solvable problem/issue with the
CFE, or libc++ depending on an older 'incorrect' behavior.
This reverts commit 0c31da48389754822dc3eecc4723160c295b9ab2.
I've solved the issue with the PointerUnion by making the
`FunctionTemplateDecl` pointer be a NamedDecl, that could be a
`FunctionDecl` or `FunctionTemplateDecl` depending. This is enforced
with an assert.
This reverts commit 4b6c2cd647e9e5a147954886338f97ffb6a1bcfb.
The patch caused numerous ARM 32 bit build failures, since we added a
5th item to the PointerUnion, and went over the 2-bits available in the
32 bit pointers.
As reported here: https://github.com/llvm/llvm-project/issues/44178
Concepts are not supposed to be instantiated until they are checked, so
this patch implements that and goes through significant amounts of work
to make sure we properly re-instantiate the concepts correctly.
Differential Revision: https://reviews.llvm.org/D119544
When exprs are written unabbreviated:
- these were encoded as 5 x vbr6 = 30 bits
- now they fit exactly into a one-chunk vbr = 6 bits
clangd --check=clangd/AST.cpp reports ~1% reduction in PCH size
(42826720->42474460)
Differential Revision: https://reviews.llvm.org/D124250
This builtin returns the address of a global instance of the
`std::source_location::__impl` type, which must be defined (with an
appropriate shape) before calling the builtin.
It will be used to implement std::source_location in libc++ in a
future change. The builtin is compatible with GCC's implementation,
and libstdc++'s usage. An intentional divergence is that GCC declares
the builtin's return type to be `const void*` (for
ease-of-implementation reasons), while Clang uses the actual type,
`const std::source_location::__impl*`.
In order to support this new functionality, I've also added a new
'UnnamedGlobalConstantDecl'. This artificial Decl is modeled after
MSGuidDecl, and is used to represent a generic concept of an lvalue
constant with global scope, deduplicated by its value. It's possible
that MSGuidDecl itself, or some of the other similar sorts of things
in Clang might be able to be refactored onto this more-generic
concept, but there's enough special-case weirdness in MSGuidDecl that
I gave up attempting to share code there, at least for now.
Finally, for compatibility with libstdc++'s <source_location> header,
I've added a second exception to the "cannot cast from void* to T* in
constant evaluation" rule. This seems a bit distasteful, but feels
like the best available option.
Reviewers: aaron.ballman, erichkeane
Differential Revision: https://reviews.llvm.org/D120159
This implements the 'using enum maybe-qualified-enum-tag ;' part of
1099. It introduces a new 'UsingEnumDecl', subclassed from
'BaseUsingDecl'. Much of the diff is the boilerplate needed to get the
new class set up.
There is one case where we accept ill-formed, but I believe this is
merely an extended case of an existing bug, so consider it
orthogonal. AFAICT in class-scope the c++20 rule is that no 2 using
decls can bring in the same target decl ([namespace.udecl]/8). But we
already accept:
struct A { enum { a }; };
struct B : A { using A::a; };
struct C : B { using A::a;
using B::a; }; // same enumerator
this patch permits mixtures of 'using enum Bob;' and 'using Bob::member;' in the same way.
Differential Revision: https://reviews.llvm.org/D102241
This attribute applies to a using declaration, and permits importing a
declaration without knowing if that declaration exists. This is useful
for libc++ C wrapper headers that re-export declarations in std::, in
cases where the base C library doesn't provide all declarations.
This attribute was proposed in http://lists.llvm.org/pipermail/cfe-dev/2020-June/066038.html.
rdar://69313357
Differential Revision: https://reviews.llvm.org/D90188
The idiom:
```
DeclContext::lookup_result R = DeclContext::lookup(Name);
for (auto *D : R) {...}
```
is not safe when in the loop body we trigger deserialization from an AST file.
The deserialization can insert new declarations in the StoredDeclsList whose
underlying type is a vector. When the vector decides to reallocate its storage
the pointer we hold becomes invalid.
This patch replaces a SmallVector with an singly-linked list. The current
approach stores a SmallVector<NamedDecl*, 4> which is around 8 pointers.
The linked list is 3, 5, or 7. We do better in terms of memory usage for small
cases (and worse in terms of locality -- the linked list entries won't be near
each other, but will be near their corresponding declarations, and we were going
to fetch those memory pages anyway). For larger cases: the vector uses a
doubling strategy for reallocation, so will generally be between half-full and
full. Let's say it's 75% full on average, so there's N * 4/3 + 4 pointers' worth
of space allocated currently and will be 2N pointers with the linked list. So we
break even when there are N=6 entries and slightly lose in terms of memory usage
after that. We suspect that's still a win on average.
Thanks to @rsmith!
Differential revision: https://reviews.llvm.org/D91524