dagcombines that help it match in several more cases. Add
several more cases to test/CodeGen/X86/bt.ll. This doesn't
yet include matching for BT with an immediate operand, it
just covers more register+register cases.
llvm-svn: 63266
new isOperationLegalOrCustom, which does what isOperationLegal
previously did.
Update a bunch of callers to use isOperationLegalOrCustom
instead of isOperationLegal. In some case it wasn't obvious
which behavior is desired; when in doubt I changed then to
isOperationLegalOrCustom as that preserves their previous
behavior.
This is for the second half of PR3376.
llvm-svn: 63212
a uint64_t to verify that the value is in range for the given type,
to help catch accidental overflow. Fix a few places that relied on
getConstant implicitly truncating the value.
llvm-svn: 63128
tidy up SDUse and related code.
- Replace the operator= member functions with a set method, like
LLVM Use has, and variants setInitial and setNode, which take
care up updating use lists, like LLVM Use's does. This simplifies
code that calls these functions.
- getSDValue() is renamed to get(), as in LLVM Use, though most
places can either use the implicit conversion to SDValue or the
convenience functions instead.
- Fix some more node vs. value terminology issues.
Also, eliminate the one remaining use of SDOperandPtr, and
SDOperandPtr itself.
llvm-svn: 62995
testcase from PR3376, and in fact is sufficient to completely
avoid the problem in that testcase.
There's an underlying problem though; TLI.isOperationLegal
considers Custom to be Legal, which might be ok in some
cases, but that's what DAGCombiner is using in many places
to test if something is legal when LegalOperations is true.
When DAGCombiner is running after legalize, this isn't
sufficient. I'll address this in a separate commit.
llvm-svn: 62860
to "C ^ 1" is only valid when C is known to be either 0 or 1. Most of the
similar foldings in this function only handle "i1" types, but this one appears
intentionally written to handle larger integer types. If C has an integer
type larger than "i1", this needs to check if the high bits of a boolean
are known to be zero. I also changed the comment to describe this folding as
"C ^ 1" instead of "~C", since that is what the code does and since the latter
would only be valid for "i1" types. The good news is that most LLVM targets
use TargetLowering::ZeroOrOneBooleanContent so this change will not disable
the optimization; the bad news is that I've been unable to come up with a
testcase to demonstrate the problem.
I have also removed a "FIXME" comment for folding "select C, X, 0" to "C & X",
since the code looks correct to me. It could be made more aggressive by not
limiting the type to "i1", but that would then require checking for
TargetLowering::ZeroOrNegativeOneBooleanContent. Similar changes could be
done for the other SELECT foldings, but it was decided to be not worth the
trouble and complexity (see e.g., r44663).
llvm-svn: 62790
Simplify x+0 to x in unsafe-fp-math mode. This avoids a bunch of
redundant work in many cases, because in unsafe-fp-math mode,
ISD::FADD with a constant is considered free to negate, so the
DAGCombiner often negates x+0 to -0-x thinking it's free, when
in reality the end result is -x, which is more expensive than x.
Also, combine x*0 to 0.
This fixes PR3374.
llvm-svn: 62789
special cases after producing the new reduced-width load, because the
new load already has the needed adjustments built into it. This fixes
several bugs due to the special cases, including PR3317.
llvm-svn: 62692
uses are added to the From node while it is processing From's
use list, because of automatic local CSE. The fix is to avoid
visiting any new uses.
Fix a few places in the DAGCombiner that assumed that after
a RAUW call, the From node has no users and may be deleted.
This fixes PR3018.
llvm-svn: 62533
and into the ScheduleDAGInstrs class, so that they don't get
destructed and re-constructed for each block. This fixes a
compile-time hot spot in the post-pass scheduler.
To help facilitate this, tidy and do some minor reorganization
in the scheduler constructor functions.
llvm-svn: 62275
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
llvm-svn: 61542
ISD::ADD to emit an implicit EFLAGS. This was horribly broken. Instead, replace
the intrinsic with an ISD::SADDO node. Then custom lower that into an
X86ISD::ADD node with a associated SETCC that checks the correct condition code
(overflow or carry). Then that gets lowered into the correct X86::ADDOvf
instruction.
Similar for SUB and MUL instructions.
llvm-svn: 60915
(this doesn't happen that often, since most code
does not use illegal types) then follow it by a
DAG combiner run that is allowed to generate
illegal operations but not illegal types. I didn't
modify the target combiner code to distinguish like
this between illegal operations and illegal types,
so it will not produce illegal operations as well
as not producing illegal types.
llvm-svn: 59960
"ISD::ADDO". ISD::ADDO is lowered into a target-independent form that does the
addition and then checks if the result is less than one of the operands. (If it
is, then there was an overflow.)
llvm-svn: 59779
The CC was changed, but wasn't checked to see if it was legal if the DAG
combiner was being run after legalization. Threw in a couple of checks just to
make sure that it's okay. As far as the PR is concerned, no back-end target
actually exhibited this problem, so there isn't an associated testcase.
llvm-svn: 59035
elements. Otherwise LegalizeTypes will, reasonably
enough, legalize the mask, which may result in it
no longer being a BUILD_VECTOR node (LegalizeDAG
simply ignores the legality or not of vector masks).
llvm-svn: 57782
and add a TargetLowering hook for it to use to determine when this
is legal (i.e. not in PIC mode, etc.)
This allows instruction selection to emit folded constant offsets
in more cases, such as the included testcase, eliminating the need
for explicit arithmetic instructions.
This eliminates the need for the C++ code in X86ISelDAGToDAG.cpp
that attempted to achieve the same effect, but wasn't as effective.
Also, fix handling of offsets in GlobalAddressSDNodes in several
places, including changing GlobalAddressSDNode's offset from
int to int64_t.
The Mips, Alpha, Sparc, and CellSPU targets appear to be
unaware of GlobalAddress offsets currently, so set the hook to
false on those targets.
llvm-svn: 57748
shift counts, and patterns that match dynamic shift counts
when the subtract is obscured by a truncate node.
Add DAGCombiner support for recognizing rotate patterns
when the shift counts are defined by truncate nodes.
Fix and simplify the code for commuting shld and shrd
instructions to work even when the given instruction doesn't
have a parent, and when the caller needs a new instruction.
These changes allow LLVM to use the shld, shrd, rol, and ror
instructions on x86 to replace equivalent code using two
shifts and an or in many more cases.
llvm-svn: 57662