Lowers the llvm.masked.gather intrinsics (scalar plus vector addressing mode only)
Changes in this patch:
- Add custom lowering for MGATHER, using getGatherVecOpcode() to choose the appropriate
gather load opcode to use.
- Improve codegen with refineIndexType/refineUniformBase, added in D90942
- Tests added for gather loads with 32 & 64-bit scaled & unscaled offsets.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91092
Updated the affected scalable_of_scalable tests in sve-gep.ll, as isConstantSplatValue now returns true in DAGCombiner::visitMUL and folds `(mul x, 1) -> x`
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91363
`SimplifySetCC` invokes `getNodeIfExists` without passing `Flags` argument and `getNodeIfExists` uses a default `SDNodeFlags` to intersect the original flags, as a consequence, flags like `nsw` is dropped. Added a new helper function `doesNodeExist` to check if a node exists without modifying its flags.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D89938
This change introduces a MIR target-independent pseudo instruction corresponding to the IR intrinsic llvm.pseudoprobe for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
An `llvm.pseudoprobe` intrinsic call will be lowered into a target-independent operation named `PSEUDO_PROBE`. Given the following instrumented IR,
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
the corresponding MIR is shown below. Note that block `bb3` is duplicated into `bb1` and `bb2` where its probe is duplicated too. This allows for an accurate execution count to be collected for `bb3`, which is basically the sum of the counts of `bb1` and `bb2`.
```
bb.0.bb0:
frame-setup PUSH64r undef $rax, implicit-def $rsp, implicit $rsp
TEST32rr killed renamable $edi, renamable $edi, implicit-def $eflags
PSEUDO_PROBE 837061429793323041, 1, 0
$edi = MOV32ri 1, debug-location !13; test.c:0
JCC_1 %bb.1, 4, implicit $eflags
bb.2.bb2:
PSEUDO_PROBE 837061429793323041, 3, 0
PSEUDO_PROBE 837061429793323041, 4, 0
$rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
RETQ
bb.1.bb1:
PSEUDO_PROBE 837061429793323041, 2, 0
PSEUDO_PROBE 837061429793323041, 4, 0
$rax = frame-destroy POP64r implicit-def $rsp, implicit $rsp
RETQ
```
The target op PSEUDO_PROBE will be converted into a piece of binary data by the object emitter with no machine instructions generated. This is done in a different patch.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86495
We have a frequent pattern where we're merging two KnownBits to get the common/shared bits, and I just fell for the gotcha where I tried to use the & operator to merge them........
Lowers the llvm.masked.scatter intrinsics (scalar plus vector addressing mode only)
Changes included in this patch:
- Custom lowering for MSCATTER, which chooses the appropriate scatter store opcode to use.
Floating-point scatters are cast to integer, with patterns added to match FP reinterpret_casts.
- Added the getCanonicalIndexType function to convert redundant addressing
modes (e.g. scaling is redundant when accessing bytes)
- Tests with 32 & 64-bit scaled & unscaled offsets
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90941
This patch adds the IsTruncatingStore flag to MaskedScatterSDNode, set by getMaskedScatter().
Updated SelectionDAGDumper::print_details for MaskedScatterSDNode to print
the details of masked scatters (is truncating, signed or scaled).
This is the first in a series of patches which adds support for scalable masked scatters
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D90939
Hook up legalizations for VECREDUCE_SEQ_FMUL. This is following up on the VECREDUCE_SEQ_FADD work from D90247.
Differential Revision: https://reviews.llvm.org/D90644
This patch uses the existing LowerFixedLengthReductionToSVE function to also lower
scalable vector reductions. A separate function has been added to lower VECREDUCE_AND
& VECREDUCE_OR operations with predicate types using ptest.
Lowering scalable floating-point reductions will be addressed in a follow up patch,
for now these will hit the assertion added to expandVecReduce() in TargetLowering.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D89382
As discussed on D90527, we should be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
As discussed on D90527, we should be be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
The refactor to use the KnownBits fixed/min/max constant helpers allows us to hit a couple of cases that we were missing before.
We still need the getValidMinimumShiftAmountConstant case as KnownBits doesn't handle per-element vector cases.
As discussed on D90527, we should be be trying to move shift handling functionality into KnownBits to avoid code duplication in SelectionDAG/GlobalISel/ValueTracking.
The refactor to use the KnownBits fixed/min/max constant helpers allows us to hit a couple of cases that we were missing before.
We still need the getValidMinimumShiftAmountConstant case as KnownBits doesn't handle per-element vector cases.
Add Legalization support for VECREDUCE_SEQ_FADD, so that we don't need to depend on ExpandReductionsPass.
Differential Revision: https://reviews.llvm.org/D90247
Replace the X86 specific isSplatZeroExtended helper with a generic BuildVectorSDNode method.
I've just used this to simplify the X86ISD::BROADCASTM lowering so far (and remove isSplatZeroExtended), but we should be able to use this in more places to lower to complex broadcast patterns.
Differential Revision: https://reviews.llvm.org/D87930
We were previously relying upon the TypeSize comparison operators to
obtain the maximum size of two types, however use of such operators is
being deprecated in favour of making the caller aware that it could
be dealing with scalable vector types. I have changed the code to assert
that the two types have the same scalable property and thus we can
simply take the maximum of the known minimum sizes instead.
Differential Revision: https://reviews.llvm.org/D88563
I have fixed up a number of warnings resulting from TypeSize -> uint64_t
casts and calling getVectorNumElements() on scalable vector types. I
think most of the changes are fairly trivial except for those in
DAGTypeLegalizer::SplitVecRes_MSTORE I've tried to ensure we create
the MachineMemoryOperands in a sensible way for scalable vectors.
I have added a CHECK line to the following test:
CodeGen/AArch64/sve-split-store.ll
that ensures no new warnings are added.
Differential Revision: https://reviews.llvm.org/D86928
In the motivating case from https://llvm.org/PR47517
we create a node that does not get constant folded
before getNegatedExpression is attempted from some
other node, and we crash.
By moving the fold into SelectionDAG::simplifyFPBinop(),
we get the constant fold sooner and avoid the problem.
This patch adds FP_EXTEND_MERGE_PASSTHRU & FP_ROUND_MERGE_PASSTHRU
ISD nodes, used to lower scalable vector fp_extend/fp_round operations.
fp_round has an additional argument, the 'trunc' flag, which is an integer of zero or one.
This also fixes a warning introduced by the new tests added to sve-split-fcvt.ll,
resulting from an implicit TypeSize -> uint64_t cast in SplitVecOp_FP_ROUND.
Reviewed By: sdesmalen, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D88321
This is like FastMathFlagGuard in IR. Since we use SDAG instance to get
values, it's with SelectionDAG. By creating a FlagInserter in current
scope, all values created by getNode will get the flags if no Flags
argument provided.
In this patch, I applied it to floating point operations folding part in
DAG combiner, and removed Flags passing to getNode to show its effect.
Other places in DAG combiner and other helper methods similar to getNode
also need this. They can be done in follow-up patches.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D87361
An existing function Type::getScalarSizeInBits returns a uint64_t
instead of a TypeSize class because the caller is requesting a
scalar size, which cannot be scalable. This patch makes other
similar functions requesting a scalar size consistent with that,
thereby eliminating more than 1000 implicit TypeSize -> uint64_t
casts.
Differential revision: https://reviews.llvm.org/D87889
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
Previously, we formed ISD::PARITY by looking for (and (ctpop X), 1)
but the AND might be separated from the ctpop. For example if the
parity result is multiplied by 2, we'll pull the AND through the
shift.
So to handle more cases, move to SimplifyDemandedBits where we
can handle more cases that result in only the LSB of the CTPOP
being used.
In getMemcpyLoadsAndStores(), a memcpy where the source is a zero constant is expanded to a MemOp::Set instead of a MemOp::Copy, even when the memcpy is volatile.
This is incorrect.
The fix is to add a check for volatile, and expand to MemOp::Copy in the volatile case.
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D87134
I have fixed up some more ElementCount/TypeSize related warnings in
the following tests:
CodeGen/AArch64/sve-split-extract-elt.ll
CodeGen/AArch64/sve-split-insert-elt.ll
In SelectionDAG::CreateStackTemporary we were relying upon the implicit
cast from TypeSize -> uint64_t when calling MachineFrameInfo::CreateStackObject.
I've fixed this by passing in the known minimum size instead, which I
believe is fine because the associated stack id indicates whether this
is a scalable object or not.
I've also fixed up a case in TargetLowering::SimplifyDemandedBits when
extracting a vector element from a scalable vector. The result is a scalar,
hence it wasn't caught at the start of the function. If the vector is
scalable we just bail out for now.
Differential Revision: https://reviews.llvm.org/D86431
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
I have fixed up a number of warnings resulting from TypeSize -> uint64_t
casts and calling getVectorNumElements() on scalable vector types. I
think most of the changes are fairly trivial except for those in
DAGTypeLegalizer::SplitVecRes_MLOAD I've tried to ensure we create
the MachineMemoryOperands in a sensible way for scalable vectors.
I have added a CHECK line to the following test:
CodeGen/AArch64/sve-split-load.ll
that ensures no new warnings are added.
Differential Revision: https://reviews.llvm.org/D86697
Also updates isConstOrConstSplatFP to allow the mul(A,-1) -> neg(A)
transformation when -1 is expressed as an ISD::SPLAT_VECTOR.
Differential Revision: https://reviews.llvm.org/D86415
In this patch I have fixed two issues:
1. Our SVE tuple get/set intrinsics were using the wrong constant type
for the index passed to EXTRACT_SUBVECTOR. I have fixed this by using the
function SelectionDAG::getVectorIdxConstant to create the value. Also, I
have updated the documentation for EXTRACT_SUBVECTOR describing what type
the constant index should be and we now enforce this when creating the
node.
2. The AArch64 backend was missing the appropriate patterns for
extracting certain subvectors (nxv4f16 and nxv2f32) from legal SVE types.
I have added them as part of this patch.
The only way that I could find to test the new patterns was to use the
SVE tuple get intrinsics, although I realise it looks a bit unusual.
Tests added here:
test/CodeGen/AArch64/sve-extract-subvector.ll
Differential Revision: https://reviews.llvm.org/D85516
When the result type of insertelement needs to be split,
SplitVecRes_INSERT_VECTOR_ELT will try to store the vector to a
stack temporary, store the element at the location of the stack
temporary plus the index, and reload the Lo/Hi parts.
This patch does the following to ensure this works for scalable vectors:
- Sets the StackID with getStackIDForScalableVectors() in CreateStackTemporary
- Adds an IsScalable flag to getMemBasePlusOffset() and scales the
offset by VScale when this is true
- Ensures the immediate is clamped correctly by clampDynamicVectorIndex
so that we don't try to use an out of range index
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D84874
Changes the Offset arguments to both functions from int64_t to TypeSize
& updates all uses of the functions to create the offset using TypeSize::Fixed()
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85220
As mentioned on D85463, we should be using SimplifyMultipleUseDemandedBits (which is the default fallback).
The minor regression in illegal-bitfield-loadstore.ll will be addressed properly by D77804.