Set the default processor version to v68 when the user does not specify
one in the command line. This includes changes in the LLVM backed and
linker (lld). Since lld normally sets the version based on inputs, this
change will only affect cases when there are no inputs.
Fixes#127558
When GCS was introduced to LLD, the gcs-report option allowed for a user
to gain information relating to if their relocatable objects supported
the feature. For an executable or shared-library to support GCS, all
relocatable objects must declare that they support GCS.
The gcs-report checks were only done on relocatable object files,
however for a program to enable GCS, the executable and all shared
libraries that it loads must enable GCS. gcs-report-dynamic enables
checks to be performed on all shared objects loaded by LLD, and in cases
where GCS is not supported, a warning or error will be emitted.
It should be noted that only shared files directly passed to LLD are
checked for GCS support. Files that are noted in the `DT_NEEDED` tags
are assumed to have had their GCS support checked when they were
created.
The behaviour of the -zgcs-dynamic-report option matches that of GNU ld.
The behaviour is as follows unless the user explicitly sets the value:
* -zgcs-report=warning or -zgcs-report=error implies
-zgcs-report-dynamic=warning.
This approach avoids inheriting an error level if the user wishes to
continue building a module without rebuilding all the shared libraries.
The same approach was taken for the GNU ld linker, so behaviour is
identical across the toolchains.
This implementation matches the error message and command line interface
used within the GNU ld Linker. See here:
724a8341f6
To support this option being introduced, two other changes are included
as part of this PR. The first converts the -zgcs-report option to
utilise an Enum, opposed to StringRef values. This enables easier
tracking of the value the user defines when inheriting the value for the
gas-report-dynamic option. The second is to parse the Dynamic Objects
program headers to locate the GNU Attribute flag that shows GCS is
supported. This is needed so, when using the gcs-report-dynamic option,
LLD can correctly determine if a dynamic object supports GCS.
---------
Co-authored-by: Fangrui Song <i@maskray.me>
(This application-specific option is probably not appropriate as a
linker option (.o file offers more flexibility and decouples JSON
verification from linkers). However, the option has gained some traction
in Linux distributions, with support in GNU ld, gold, and mold.)
GNU ld has supported percent-encoded bytes and extensions like
`%[comma]` since November 2024. mold supports just percent-encoded
bytes. To prepare for potential adoption by Ubuntu, let's support
percent-encoded bytes.
Link: https://sourceware.org/bugzilla/show_bug.cgi?id=32003
Link: https://bugs.launchpad.net/ubuntu/+source/dpkg/+bug/2071468
Pull Request: https://github.com/llvm/llvm-project/pull/126396
This was removed from the ABI in riscv-non-isa/riscv-elf-psabi-doc#398.
It is not emitted by LLVM, and seems to have been an internal
implementation detail in binutils.
This is a follow-up to 26ec5da744b8 which removed previous binutils
internal relocations when they were removed from the ABI.
The LLD implementation was not tested when it was added in
https://reviews.llvm.org/D39322
This allows the input section matching algorithm to be separated from
output section descriptions. This allows a group of sections to be
assigned to multiple output sections, providing an explicit version of
--enable-non-contiguous-regions's spilling that doesn't require altering
global linker script matching behavior with a flag. It also makes the
linker script language more expressive even if spilling is not intended,
since input section matching can be done in a different order than
sections are placed in an output section.
The implementation reuses the backend mechanism provided by
--enable-non-contiguous-regions, so it has roughly similar semantics and
limitations. In particular, sections cannot be spilled into or out of
INSERT, OVERWRITE_SECTIONS, or /DISCARD/. The former two aren't
intrinsic, so it may be possible to relax those restrictions later.
GNU ld since 2.41 supports this option, which is mildly useful. It omits
the section header table and non-ALLOC sections (including
.symtab/.strtab (--strip-all)).
This option is simple to implement and might be used by LLDB to test
program headers parsing without the section header table (#100900).
-z sectionheader, which is the default, is also added.
Pull Request: https://github.com/llvm/llvm-project/pull/101286
This reverts commit f55b79f59a77b4be586d649e9ced9f8667265011.
The known issues with chained fixups have been addressed by #98913,
#98305, #97156 and #95171.
Compared to the original commit, support for xrOS (which postdates
chained fixups' introduction) was added and an unnecessary test change
was removed.
----------
Original commit message:
Enable chained fixups in lld when all platform and version criteria are
met. This is an attempt at simplifying the logic used in ld 907:
93d74eafc3/src/ld/Options.cpp (L5458-L5549)
Some changes were made to simplify the logic:
- only enable chained fixups for macOS from 13.0 to avoid the arch check
- only enable chained fixups for iphonesimulator from 16.0 to avoid the
arch check
- don't enable chained fixups for not specifically listed platforms
- don't enable chained fixups for arm64_32
Implement the two commands described by
https://sourceware.org/binutils/docs/ld/Miscellaneous-Commands.html
After `outputSections` is available, check each output section described
by at least one `NOCROSSREFS`/`NOCROSSERFS_TO` command. For each checked
output section, scan relocations from its input sections.
This step is slow, therefore utilize `parallelForEach(isd->sections, ...)`.
To support non SHF_ALLOC sections, `InputSectionBase::relocations`
(empty) cannot be used. In addition, we may explore eliminating this
member to speed up relocation scanning.
Some parse code is adapted from #95714.
Close#41825
Pull Request: https://github.com/llvm/llvm-project/pull/98773
This patch improves GNU ld compatibility.
Close#87891: Support `OUTPUT_FORMAT(binary)`, which is like
--oformat=binary. --oformat=binary takes precedence over an ELF
`OUTPUT_FORMAT`.
In addition, if more than one OUTPUT_FORMAT command is specified, only
check the first one.
Pull Request: https://github.com/llvm/llvm-project/pull/98837
The current default, build-id=fast, is only 8 bytes due to the usage of
64-bit XXH3. This is incompatible with RPM packaging tools which
requires >=16 bytes [1].
In Clang the ENABLE_LINKER_BUILD_ID define makes it pass --build-id
without a specific hash type. When also defaulting to LLD, this provides
a pretty broken default out-of-box.
Using XXH3 was a considerable performance advantage when build-id was
first implemented, because sha1 was really sha1 and rather slow.
Nowadays sha1 is just 160-bit BLAKE3 which is decently fast and not
cryptographically broken, so it should be a good default.
Note that the default remains "fast" for wasm because sha1 for wasm is
still real sha1.
Close https://github.com/llvm/llvm-project/issues/43483.
[1]:
b7d427728b/build/files.c (L1883)
GNU ld's relocatable linking behaviors:
* Sections with the `SHF_GROUP` flag are handled like sections matched
by the `--unique=pattern` option. They are processed like orphan
sections and ignored by input section descriptions.
* Section groups' (usually named `.group`) content is updated as the
section indexes are updated. Section groups can be discarded with
`/DISCARD/ : { *(.group) }`.
`-r --force-group-allocation` discards section groups and allows
sections with the `SHF_GROUP` flag to be matched like normal sections.
If two section group members are placed into the same output section,
their relocation sections (if present) are combined as well.
This behavior can be useful when -r output is used as a pseudo shared
object (e.g., FreeBSD's amd64 kernel modules, CHERIoT compartments).
This patch implements --force-group-allocation:
* Input SHT_GROUP sections are discarded.
* Input sections do not get the SHF_GROUP flag, so `addInputSec`
will combine relocation sections if their relocated section group
members are combined.
The default behavior is:
* Input SHT_GROUP sections are retained.
* Input SHF_GROUP sections can be matched (unlike GNU ld)
* Input SHF_GROUP sections keep the SHF_GROUP flag, so `addInputSec`
will create different OutputDesc copies.
GNU ld provides the `FORCE_GROUP_ALLOCATION` command, which is not
implemented.
Pull Request: https://github.com/llvm/llvm-project/pull/94704
--compress-debug-sections in GNU ld, gas, and LLVM integrated assembler
retain the uncompressed content if the compressed content is larger.
This patch also updates the manpage (-O2 does not enable zlib level 6)
and fixes a crash of --compress-sections when the uncompressed section
is empty.
When enabled, input sections that would otherwise overflow a memory
region are instead spilled to the next matching output section.
This feature parallels the one in GNU LD, but there are some differences
from its documented behavior:
- /DISCARD/ only matches previously-unmatched sections (i.e., the flag
does not affect it).
- If a section fails to fit at any of its matches, the link fails
instead of discarding the section.
- The flag --enable-non-contiguous-regions-warnings is not implemented,
as it exists to warn about such occurrences.
The implementation places stubs at possible spill locations, and
replaces them with the original input section when effecting spills.
Spilling decisions occur after address assignment. Sections are spilled
in reverse order of assignment, with each spill naively decreasing the
size of the affected memory regions. This continues until the memory
regions are brought back under size. Spilling anything causes another
pass of address assignment, and this continues to fixed point.
Spilling after rather than during assignment allows the algorithm to
consider the size effects of unspillable input sections that appear
later in the assignment. Otherwise, such sections (e.g. thunks) may
force an overflow, even if spilling something earlier could have avoided
it.
A few notable feature interactions occur:
- Stubs affect alignment, ONLY_IF_RO, etc, broadly as if a copy of the
input section were actually placed there.
- SHF_MERGE synthetic sections use the spill list of their first
contained input section (the one that gives the section its name).
- ICF occurs oblivious to spill sections; spill lists for merged-away
sections become inert and are removed after assignment.
- SHF_LINK_ORDER and .ARM.exidx are ordered according to the final
section ordering, after all spilling has completed.
- INSERT BEFORE/AFTER and OVERWRITE_SECTIONS are explicitly disallowed.
When enabled, input sections that would otherwise overflow a memory
region are instead spilled to the next matching output section.
This feature parallels the one in GNU LD, but there are some differences
from its documented behavior:
- /DISCARD/ only matches previously-unmatched sections (i.e., the flag
does not affect it).
- If a section fails to fit at any of its matches, the link fails
instead of discarding the section.
- The flag --enable-non-contiguous-regions-warnings is not implemented,
as it exists to warn about such occurrences.
The implementation places stubs at possible spill locations, and
replaces them with the original input section when effecting spills.
Spilling decisions occur after address assignment. Sections are spilled
in reverse order of assignment, with each spill naively decreasing the
size of the affected memory regions. This continues until the memory
regions are brought back under size. Spilling anything causes another
pass of address assignment, and this continues to fixed point.
Spilling after rather than during assignment allows the algorithm to
consider the size effects of unspillable input sections that appear
later in the assignment. Otherwise, such sections (e.g. thunks) may
force an overflow, even if spilling something earlier could have avoided
it.
A few notable feature interactions occur:
- Stubs affect alignment, ONLY_IF_RO, etc, broadly as if a copy of the
input section were actually placed there.
- SHF_MERGE synthetic sections use the spill list of their first
contained input section (the one that gives the section its name).
- ICF occurs oblivious to spill sections; spill lists for merged-away
sections become inert and are removed after assignment.
- SHF_LINK_ORDER and .ARM.exidx are ordered according to the final
section ordering, after all spilling has completed.
- INSERT BEFORE/AFTER and OVERWRITE_SECTIONS are explicitly disallowed.
zstd excels at scaling from low-ratio-very-fast to
high-ratio-pretty-slow. Some users prioritize speed and prefer disk read
speed, while others focus on achieving the highest compression ratio
possible, similar to traditional high-ratio codecs like LZMA.
Add an optional `level` to `--compress-sections` (#84855) to cater to
these diverse needs. While we initially aimed for a one-size-fits-all
approach, this no longer seems to work.
(https://richg42.blogspot.com/2015/11/the-lossless-decompression-pareto.html)
When --compress-debug-sections is used together, make
--compress-sections take precedence since --compress-sections is usually
more specific.
Remove the level distinction between -O/-O1 and -O2 for
--compress-debug-sections=zlib for a more consistent user experience.
Pull Request: https://github.com/llvm/llvm-project/pull/90567
GNU ld added --default-script (alias: -dT) in 2007. The option specifies
a default script that is processed if --script/-T is not specified. -dT
can be used to override GNU ld's internal linker script, but only when
the application does not specify -T.
In addition, dynamorio's CMakeLists.txt may use -dT.
The implementation is simple and the feature can be useful to dabble
with different section layouts.
Pull Request: https://github.com/llvm/llvm-project/pull/89327
`clang -g -gpubnames` (with optional -gsplit-dwarf) creates the
`.debug_names` section ("per-CU" index). By default lld concatenates
input `.debug_names` sections into an output `.debug_names` section.
LLDB can consume the concatenated section but the lookup performance is
not good.
This patch adds --debug-names to create a per-module index by combining
the per-CU indexes into a single index that covers the entire load
module. The produced `.debug_names` is a replacement for `.gdb_index`.
Type units (-fdebug-types-section) are not handled yet.
Co-authored-by: Fangrui Song <i@maskray.me>
---------
Co-authored-by: Fangrui Song <i@maskray.me>
Unknown section sections may require special linking rules, and
rejecting such sections for older linkers may be desired. For example,
if we introduce a new section type to replace a control structure (e.g.
relocations), it would be nice for older linkers to reject the new
section type. GNU ld allows certain unknown section types:
* [SHT_LOUSER,SHT_HIUSER] and non-SHF_ALLOC
* [SHT_LOOS,SHT_HIOS] and non-SHF_OS_NONCONFORMING
but reports errors and stops linking for others (unless
--no-warn-mismatch is specified). Port its behavior. For convenience, we
additionally allow all [SHT_LOPROC,SHT_HIPROC] types so that we don't
have to hard code all known types for each processor.
Close https://github.com/llvm/llvm-project/issues/84812
--compress-sections <section-glib>=[none|zlib|zstd] is similar to
--compress-debug-sections but applies to broader sections without the
SHF_ALLOC flag. lld will report an error if a SHF_ALLOC section is
matched. An interesting use case is to compress `.strtab`/`.symtab`,
which consume a significant portion of the file size (15.1% for a
release build of Clang).
An older revision is available at https://reviews.llvm.org/D154641 .
This patch focuses on non-allocated sections for safety. Moving
`maybeCompress` as D154641 does not handle STT_SECTION symbols for
`-r --compress-debug-sections=zlib` (see `relocatable-section-symbol.s`
from #66804).
Since different output sections may use different compression
algorithms, we need CompressedData::type to generalize
config->compressDebugSections.
GNU ld feature request: https://sourceware.org/bugzilla/show_bug.cgi?id=27452
Link: https://discourse.llvm.org/t/rfc-compress-arbitrary-sections-with-ld-lld-compress-sections/71674
Pull Request: https://github.com/llvm/llvm-project/pull/84855
We recently added `--initial-heap` - an option that allows one to up the
initial memory size without the burden of having to know exactly how
much is needed.
However, in the process of implementing support for this in Emscripten
(https://github.com/emscripten-core/emscripten/pull/21071), we have
realized that `--initial-heap` cannot support the use-case of
non-growable memories by itself, since with it we don't know what to set
`--max-memory` to.
We have thus agreed to move the above work forward by introducing
another option to the linker (see
https://github.com/emscripten-core/emscripten/pull/21071#discussion_r1491755616),
one that would allow users to explicitly specify they want a
non-growable memory.
This change does this by introducing `--no-growable-memory`: an option
that is mutally exclusive with `--max-memory` (for simplicity - we can
also decide that it should override or be overridable by `--max-memory`.
In Emscripten a similar mix of options results in `--no-growable-memory`
taking precedence). The option specifies that the maximum memory size
should be set to the initial memory size, effectively disallowing memory
growth.
Closes#81932.
https://reviews.llvm.org/D150510 places .lrodata before .rodata to
minimize the number of permission transitions in the memory image.
However, this layout is less ideal for -fno-pic code (which is still
important).
Small code model -fno-pic code has R_X86_64_32S relocations with a range
of `[0,2**31)` (if we ignore the negative area). Placing `.lrodata`
earlier exerts relocation pressure on such code. Non-x86 64-bit
architectures generally have a similar `[0,2**31)` limitation if they
don't use PC-relative relocations.
If we place .lrodata later, we will need one extra PT_LOAD. Two layouts
are appealing:
* .bss/.lbss/.lrodata/.ldata (GNU ld)
* .bss/.ldata/.lbss/.lrodata
The GNU ld layout has the nice property that there is only one BSS
(except .tbss/.relro_padding). Add -z lrodata-after-bss to support
this layout.
Since a read-only PT_LOAD segment (for large data sections) may appear
after RW PT_LOAD segments. The placement of `_etext` has to be adjusted.
Pull Request: https://github.com/llvm/llvm-project/pull/81224
The ELF linker transitioned away from archive indexes in
https://reviews.llvm.org/D117284.
This paves the way for supporting `--start-lib`/`--end-lib` (See #77960)
The ELF linker unified library handling with `--start-lib`/`--end-lib` and removed
the ArchiveFile class in https://reviews.llvm.org/D119074.
It is beneficial to preallocate a certain number of pages in the linear
memory (i. e. use the "minimum" field of WASM memories) so that fewer
"memory.grow"s are needed at startup.
So far, the way to do that has been to pass the "--initial-memory"
option to the linker. It works, but has the very significant downside of
requiring the user to know the size of static data beforehand, as it
must not exceed the number of bytes passed-in as "--initial-memory".
The new "--initial-heap" option avoids this downside by simply appending
the specified number of pages to static data (and stack), regardless of
how large they already are.
Ref: https://github.com/emscripten-core/emscripten/issues/20888.
After #71433, lld-link is able to always generate build id even when PDB
is not generated.
This adds the `__buildid` symbol to points to the start of 16 bytes guid
(which is after `RSDS`) and allows profile runtime to access it and dump
it to raw profile.
Edited lld/ELF/Options.td to cdsort as well
CDSort function reordering outperforms the existing default heuristic (
hfsort/C^3) in terms of the performance of generated binaries while
being (almost) as fast. Thus, the suggestion is to change the default.
The speedup is up to 1.5% perf for large front-end binaries, and can be
moderate/neutral for "small" benchmarks.
High-level **perf impact** on two selected binaries:
clang-10 binary (built with LTO+AutoFDO/CSSPGO): wins on top of C^3 in
[0.3%..0.8%]
rocksDB-8 binary (built with LTO+CSSPGO): wins on top of C^3 in
[0.8%..1.5%]
More detailed measurements on the clang binary is at
[here](https://reviews.llvm.org/D152834#4445042)
For an output section with no input section, GNU ld eliminates the
output section when there are only symbol assignments (e.g.
`.foo : { symbol = 42; }`) but not for `.foo : { . += 42; }`
(`SHF_ALLOC|SHF_WRITE`).
We choose to retain such an output section with a symbol assignment
(unless unreferenced `PROVIDE`). We copy the previous section flag (see
https://reviews.llvm.org/D37736) to hopefully make the current PT_LOAD
segment extend to the current output section:
* decrease the number of PT_LOAD segments
* If a new PT_LOAD segment is introduced without a page-size
alignment as a separator, there may be a run-time crash.
However, this `flags` copying behavior is not suitable for
`.foo : { . += 42; }` when `flags` contains `SHF_EXECINSTR`. The
executable bit is surprising
(https://discourse.llvm.org/t/lld-output-section-flag-assignment-behavior/74359).
I think we should drop SHF_EXECINSTR when copying `flags`. The risk is a
code section followed by `.foo : { symbol = 42; }` will be broken, which
I believe is unrelated as such uses are almost always related to data
sections.
For data-command-only output sections (e.g. `.foo : { QUAD(42) }`), we
keep allowing copyable SHF_WRITE.
Some tests are updated to drop the SHF_EXECINSTR flag. GNU ld doesn't
set SHF_EXECINSTR as well, though it sets SHF_WRITE for some tests while
we don't.
CDSort function reordering outperforms the existing default heuristic (
hfsort/C^3) in terms of the performance of generated binaries while
being (almost) as fast. Thus, the suggestion is to change the default.
The speedup is up to 1.5% perf for large front-end binaries, and can be
moderate/neutral for "small" benchmarks.
High-level **perf impact** on two selected binaries:
clang-10 binary (built with LTO+AutoFDO/CSSPGO): wins on top of C^3 in
[0.3%..0.8%]
rocksDB-8 binary (built with LTO+CSSPGO): wins on top of C^3 in
[0.8%..1.5%]
More detailed measurements on the clang binary is at
[here](https://reviews.llvm.org/D152834#4445042)
This adds support for generating Chrome-tracing .json profile traces in
the LLD COFF driver.
Also add the necessary time scopes, so that the profile trace shows in
great detail which tasks are executed.
As an example, this is what we see when linking a Unreal Engine
executable:

We are brining a new algorithm for function layout (reordering) based on the
call graph (extracted from a profile data). The algorithm is an improvement of
top of a known heuristic, C^3. It tries to co-locate hot and frequently executed
together functions in the resulting ordering. Unlike C^3, it explores a larger
search space and have an objective closely tied to the performance of
instruction and i-TLB caches. Hence, the name CDS = Cache-Directed Sort.
The algorithm can be used at the linking or post-linking (e.g., BOLT) stage.
Refer to https://reviews.llvm.org/D152834 for the actual implementation of the
reordering algorithm.
This diff adds a linker option to replace the existing C^3 heuristic with CDS.
The new behavior can be turned on by passing "--use-cache-directed-sort".
(the plan is to make it default in a next diff)
**Perf-impact**
clang-10 binary (built with LTO+AutoFDO/CSSPGO): wins on top of C^3 in [0.3%..0.8%]
rocksDB-8 binary (built with LTO+CSSPGO): wins on top of C^3 in [0.8%..1.5%]
Note that function layout affects the perf the most on older machines (with
smaller instruction/iTLB caches) and when huge pages are not enabled. The impact
on newer processors with huge pages enabled is likely neutral/minor.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D152840
Change the FF form --call-graph-profile-sort to --call-graph-profile-sort={none,hfsort}.
This will be extended to support llvm/lib/Transforms/Utils/CodeLayout.cpp.
--call-graph-profile-sort is not used in the wild but
--no-call-graph-profile-sort is (Chromium). Make --no-call-graph-profile-sort an
alias for --call-graph-profile-sort=none.
Reviewed By: rahmanl
Differential Revision: https://reviews.llvm.org/D159544