DenseSet, SmallPtrSet, SmallSet, SetVector, and StringSet recently
gained C++23-style insert_range. This patch replaces:
Dest.insert(Src.begin(), Src.end());
with:
Dest.insert_range(Src);
This patch does not touch custom begin like succ_begin for now.
This patch shares core interface methods dealing with argument and
result attributes from CallableOpInterface with the CallOpInterface and
makes them mandatory to gives more consistent guarantees about concrete
operations using these interfaces.
This allows adding argument attributes on call like operations, which is
sometimes required to get proper ABI, like with llvm.call (and llvm.invoke).
The patch adds optional `arg_attrs` and `res_attrs` attributes to operations using
these interfaces that did not have that already.
They can then re-use the common "rich function signature"
printing/parsing helpers if they want (for the LLVM dialect, this is
done in the next patch).
Part of RFC: https://discourse.llvm.org/t/mlir-rfc-adding-argument-and-result-attributes-to-llvm-call/84107
The greedy rewriter is used in many different flows and it has a lot of
convenience (work list management, debugging actions, tracing, etc). But
it combines two kinds of greedy behavior 1) how ops are matched, 2)
folding wherever it can.
These are independent forms of greedy and leads to inefficiency. E.g.,
cases where one need to create different phases in lowering and is
required to applying patterns in specific order split across different
passes. Using the driver one ends up needlessly retrying folding/having
multiple rounds of folding attempts, where one final run would have
sufficed.
Of course folks can locally avoid this behavior by just building their
own, but this is also a common requested feature that folks keep on
working around locally in suboptimal ways.
For downstream users, there should be no behavioral change. Updating
from the deprecated should just be a find and replace (e.g., `find ./
-type f -exec sed -i
's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety)
as the API arguments hasn't changed between the two.
When creating a new block in (conversion) rewrite patterns,
`OpBuilder::createBlock` must be used. Otherwise, no
`notifyBlockInserted` notification is sent to the listener.
Note: The dialect conversion relies on listener notifications to keep
track of IR modifications. Creating blocks without the builder API can
lead to memory leaks during rollback.
Context: Conversion patterns provide a `ConversionPatternRewriter` to
modify the IR. `ConversionPatternRewriter` provides the public API. Most
function calls are forwarded/handled by `ConversionPatternRewriterImpl`.
The dialect conversion uses the listener infrastructure to get notified
about op/block insertions.
In the current design, `ConversionPatternRewriter` inherits from both
`PatternRewriter` and `Listener`. The conversion rewriter registers
itself as a listener. This is problematic because listener functions
such as `notifyOperationInserted` are now part of the public API and can
be called from conversion patterns; that would bring the dialect
conversion into an inconsistent state.
With this commit, `ConversionPatternRewriter` no longer inherits from
`Listener`. Instead `ConversionPatternRewriterImpl` inherits from
`Listener`. This removes the problematic public API and also simplifies
the code a bit: block/op insertion notifications were previously
forwarded to the `ConversionPatternRewriterImpl`. This is no longer
needed.
The pattern rewriter documentation states that "*all* IR mutations [...]
are required to be performed via the `PatternRewriter`." This commit
adds two functions that were missing from the rewriter API:
`moveOpBefore` and `moveOpAfter`.
After an operation was moved, the `notifyOperationInserted` callback is
triggered. This allows listeners such as the greedy pattern rewrite
driver to react to IR changes.
This commit narrows the discrepancy between the kind of IR modification
that can be performed and the kind of IR modifications that can be
listened to.
Those are probably leftovers from an old name of the same attribute.
Fixed for the sake of consistency.
Co-authored-by: Yoni Lavi <yoni.lavi@nextsilicon.com>
This commit makes reductions part of the terminator. Instead of
`scf.yield`, `scf.reduce` now terminates the body of `scf.parallel` ops.
`scf.reduce` may contain an arbitrary number of reductions, with one
region per reduction.
Example:
```mlir
%init = arith.constant 0.0 : f32
%r:2 = scf.parallel (%iv) = (%lb) to (%ub) step (%step) init (%init, %init)
-> f32, f32 {
%elem_to_reduce1 = load %buffer1[%iv] : memref<100xf32>
%elem_to_reduce2 = load %buffer2[%iv] : memref<100xf32>
scf.reduce(%elem_to_reduce1, %elem_to_reduce2 : f32, f32) {
^bb0(%lhs : f32, %rhs: f32):
%res = arith.addf %lhs, %rhs : f32
scf.reduce.return %res : f32
}, {
^bb0(%lhs : f32, %rhs: f32):
%res = arith.mulf %lhs, %rhs : f32
scf.reduce.return %res : f32
}
}
```
`scf.reduce` operations can no longer be interleaved with other ops in
the body of `scf.parallel`. This simplifies the op and makes it possible
to assign the `RecursiveMemoryEffects` trait to `scf.reduce`. (This was
not possible before because the op was not a terminator, causing the op
to be DCE'd.)
This commit implements `LoopLikeOpInterface` on `scf.while`. This
enables LICM (and potentially other transforms) on `scf.while`.
`LoopLikeOpInterface::getLoopBody()` is renamed to `getLoopRegions` and
can now return multiple regions.
Also fix a bug in the default implementation of
`LoopLikeOpInterface::isDefinedOutsideOfLoop()`, which returned "false"
for some values that are defined outside of the loop (in a nested op, in
such a way that the value does not dominate the loop). This interface is
currently only used for LICM and there is no way to trigger this bug, so
no test is added.
Splits the cleanup block lowered from AsyncToAsyncRuntime.
The incentive of this change is to clarify the CFG branched by
`async.coro.suspend`.
The `async.coro.suspend` op branches into 3 blocks, depending on the
state of the coroutine:
1) suspend
2) resume
3) cleanup
The behavior before this change is that after the coroutine is resumed
and completed, it will jump to a shared cleanup block for destroying the
states of coroutines. The CFG looks like the following,
Entry block
| \
resume |
| |
Cleanup
|
End
This CFG can potentially be problematic, because the `Cleanup` block is
a shared block and it is not dominated by `resume`. For instance, if
some pass wants to add some specific cleanup mechanism to resume, it can
be confused and add them to the shared `Cleanup`, which leads to the
"operand not dominate its use" error because of the existence of the
other "Entry->cleanup" path.
After this change, the CFG will look like the following,
The overall structure of the lowered CFG can be the following,
Entry (calling async.coro.suspend)
| \
Resume Destroy (duplicate of Cleanup)
| |
Cleanup |
| /
End (ends the corontine)
In this case, the Cleanup block tied to the Resume block will be
isolated from the other path and it is strictly dominated by "Resume".
Functions are always callable operations and thus every operation
implementing the `FunctionOpInterface` also implements the
`CallableOpInterface`. The only exception was the FuncOp in the toy
example. To make implementation of the `FunctionOpInterface` easier,
this commit lets `FunctionOpInterface` inherit from
`CallableOpInterface` and merges some of their methods. More precisely,
the `CallableOpInterface` has methods to get the argument and result
attributes and a method to get the result types of the callable region.
These methods are always implemented the same way as their analogues in
`FunctionOpInterface` and thus this commit moves all the argument and
result attribute handling methods to the callable interface as well as
the methods to get the argument and result types. The
`FuntionOpInterface` then does not have to declare them as well, but
just inherits them from the `CallableOpInterface`.
Adding the inheritance relation also required to move the
`FunctionOpInterface` from the IR directory to the Interfaces directory
since IR should not depend on Interfaces.
Reviewed By: jpienaar, springerm
Differential Revision: https://reviews.llvm.org/D157988
The current implementation is not very ergonomic or descriptive: It uses `std::optional<unsigned>` where `std::nullopt` represents the parent op and `unsigned` is the region number.
This doesn't give us any useful methods specific to region control flow and makes the code fragile to changes due to now taking the region number into account.
This patch introduces a new type called `RegionBranchPoint`, replacing all uses of `std::optional<unsigned>` in the interface. It can be implicitly constructed from a region or a `RegionSuccessor`, can be compared with a region to check whether the branch point is branching from the parent, adds `isParent` to check whether we are coming from a parent op and adds `RegionSuccessor::parent` as a descriptive way to indicate branching from the parent.
Differential Revision: https://reviews.llvm.org/D159116
The `RegionBranchOpInterface` had a few fundamental issues caused by the API design of `getSuccessorRegions`.
It always required passing values for the `operands` parameter. This is problematic as the operands parameter actually changes meaning depending on which predecessor `index` is referring to. If coming from a region, you'd have to find a `RegionBranchTerminatorOpInterface` in that region, get its operand count, and then create a `SmallVector` of that size.
This is not only inconvenient, but also error-prone, which has lead to a bug in the implementation of a previously existing `getSuccessorRegions` overload.
Additionally, this made the method dual-use, trying to serve two different use-cases: 1) Trying to determine possible control flow edges between regions and 2) Trying to determine the region being branched to based on constant operands.
This patch fixes these issues by changing the interface methods and adding new ones:
* The `operands` argument of `getSuccessorRegions` has been removed. The method is now only responsible for returning possible control flow edges between regions.
* An optional `getEntrySuccessorRegions` method has been added. This is used to determine which regions are branched to from the parent op based on constant operands of the parent op. By default, it calls `getSuccessorRegions`. This is analogous to `getSuccessorForOperands` from `BranchOpInterface`.
* Add `getSuccessorRegions` to `RegionBranchTerminatorOpInterface`. This is used to get the possible successors of the terminator based on constant operands. By default, it calls the containing `RegionBranchOpInterface`s `getSuccessorRegions` method.
* `getSuccessorEntryOperands` was renamed to `getEntrySuccessorOperands` for consistency.
Differential Revision: https://reviews.llvm.org/D157506
This renaming started with the native ODS support for properties, this is completing it.
A mass automated textual rename seems safe for most codebases.
Drop also the ods prefix to keep the accessors the same as they were before
this change:
properties.odsOperandSegmentSizes
reverts back to:
properties.operandSegementSizes
The ODS prefix was creating divergence between all the places and make it harder to
be consistent.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D157173
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.
See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.
One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-export-fixes /tmp/cast/casts.yaml mlir/*\
-header-filter=mlir/ -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D150348
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
```
OpBuilder OpBuilder::Listener
^ ^
| |
RewriterBase RewriterBase::Listener
```
* Clients can listen to IR modifications with `RewriterBase::Listener`.
* `RewriterBase` no longer inherits from `OpBuilder::Listener`.
* Only a single listener can be registered at the moment (same as `OpBuilder`).
RFC: https://discourse.llvm.org/t/rfc-listeners-for-rewriterbase/68198
Differential Revision: https://reviews.llvm.org/D143339
Instead, use the builder and infer the return type based on the inner `yield` ops.
Also, fix uses that do not create the terminator as required for the callback builders.
Differential Revision: https://reviews.llvm.org/D142056
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
Reland D139447, D139471 With flang actually working
- FunctionOpInterface: make get/setFunctionType interface methods
This patch removes the concept of a `function_type`-named type attribute
as a requirement for implementors of FunctionOpInterface. Instead, this
type should be provided through two interface methods, `getFunctionType`
and `setFunctionTypeAttr` (*Attr because functions may use different
concrete function types), which should be automatically implemented by
ODS for ops that define a `$function_type` attribute.
This also allows FunctionOpInterface to materialize function types if
they don't carry them in an attribute, for example.
Importantly, all the function "helper" still accept an attribute name to
use in parsing and printing functions, for example.
- FunctionOpInterface: arg and result attrs dispatch to interface
This patch removes the `arg_attrs` and `res_attrs` named attributes as a
requirement for FunctionOpInterface and replaces them with interface
methods for the getters, setters, and removers of the relevent
attributes. This allows operations to use their own storage for the
argument and result attributes.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D139736
and "[mlir] Fix examples build"
This reverts commit fbc253fe81da4e1d6bfa2519e01e03f21d8c40a8 and
96cf183bccd7d1c3083f169a89a6af1f263b3aae.
Which I missed in the first revert in f3379feabe38fd3711b13ffcf6de4aab03b7ccdc.
and "[flang] Fix flang after MLIR update"
This reverts commit dd74e6b6f4fb7a4685086a4895c1934e043f875b and
1897b67ae86470ad54f6baea6f220933d8053b5b due to ongoing test failures on flang
bots e.g. https://lab.llvm.org/buildbot/#/builders/179/builds/5050
This patch removes the `arg_attrs` and `res_attrs` named attributes as a
requirement for FunctionOpInterface and replaces them with interface
methods for the getters, setters, and removers of the relevent
attributes. This allows operations to use their own storage for the
argument and result attributes.
Depends on D139471
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D139472
This patch removes the concept of a `function_type`-named type attribute
as a requirement for implementors of FunctionOpInterface. Instead, this
type should be provided through two interface methods, `getFunctionType`
and `setFunctionTypeAttr` (*Attr because functions may use different
concrete function types), which should be automatically implemented by
ODS for ops that define a `$function_type` attribute.
This also allows FunctionOpInterface to materialize function types if
they don't carry them in an attribute, for example.
Importantly, all the function "helper" still accept an attribute name to
use in parsing and printing functions, for example.
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D139447
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This change adds async_funcs_only option to AsyncToAsyncRuntimePass. The goal is to convert async functions to regular functions in early stages of compilation pipeline.
Differential Revision: https://reviews.llvm.org/D138611
Remove the eliminateBlockingAwaitOps option in AsyncToAsyncRuntime pass
Today the AsyncToAsyncRuntime pass does two things: one is converting normal funcs with async ops to coroutine cfg; the other is lowering high level async operations to async.coro and async.runtime operations. This patch removes the converting step from AsyncToAsyncRuntime pass.
In the next step we will create a new asyncfication pass for converting normal funcs to the newly added async.func operation.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D137282
Add Async Function to the Async Dialect
Today `async.execute` operation semantics requires attached region to be executed in a thread managed by the runtime, and always returns an `!async.token` result. We need to model async functions that are not necessarily executed in a runtime-managed threads, but eventually lowered to llvm coroutines.
Example:
```
async.func @foo(%arg0: !async.value<f32>) -> !async.token {
%0 = async.await %arg0: !async.value<f32>
"do_something_with_f32"(%0)
return
}
```
If `arg0` is available this function will be executed in the caller thread. If it's not available it will be suspended and resumed later later on a thread managed by the async runtime. Currently this is not representable with `async.execute` operations.
The longer term goal is to make async dialect more like https://github.com/lewissbaker/cppcoro to be able to represent structured host concurrency in MLIR.
(1) Add async.func, async.call, and async.return operations in Async Dialect
Reviewed By: ezhulenev, rriddle
Differential Revision: https://reviews.llvm.org/D137189
This allows for incrementally updating the old API usages without
needing to update everything at once. These will be left on Both
for a little bit and then flipped to prefixed when all APIs have been
updated.
Differential Revision: https://reviews.llvm.org/D134386
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838