The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
Enables fixed sized vectors to detect SK_Splice shuffle patterns and provides basic X86 cost support
Differential Revision: https://reviews.llvm.org/D132374
Following some recent discussions, this changes the representation
of callbrs in IR. The current blockaddress arguments are replaced
with `!` label constraints that refer directly to callbr indirect
destinations:
; Before:
%res = callbr i8* asm "", "=r,r,i"(i8* %x, i8* blockaddress(@test8, %foo))
to label %asm.fallthrough [label %foo]
; After:
%res = callbr i8* asm "", "=r,r,!i"(i8* %x)
to label %asm.fallthrough [label %foo]
The benefit of this is that we can easily update the successors of
a callbr, without having to worry about also updating blockaddress
references. This should allow us to remove some limitations:
* Allow unrolling/peeling/rotation of callbr, or any other
clone-based optimizations
(https://github.com/llvm/llvm-project/issues/41834)
* Allow duplicate successors
(https://github.com/llvm/llvm-project/issues/45248)
This is just the IR representation change though, I will follow up
with patches to remove limtations in various transformation passes
that are no longer needed.
Differential Revision: https://reviews.llvm.org/D129288
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
Even if the minimum number of elements is 1 and the length doesn't change,
we don't know what vscale is so we can't classify it as identity mask. Instead it
is a zero element splat.
For reverse, we shouldn't classify it as a reverse unless there are at least 2 elements
in the mask. This applies to both fixed and scalable vectors. For fixed vectors, a single
element would be an identity shuffle. For scalable vector it's a zero elt splat.
Reviewed By: sdesmalen, liaolucy
Differential Revision: https://reviews.llvm.org/D124655
This got changed to use hasAttrSomewhere() during review, and I didn't
notice until today when I was writing some tests for another part of
this system that using hasAttrSomewhere only checked the callsite for
allocalign, rather than both the callsite and the definition. This fixes
that by introducing a helper method.
Differential Revision: https://reviews.llvm.org/D121641
Prior to this change, CallBase::hasFnAttr checked the called function to
see if it had an attribute if it wasn't set on the CallBase, but
getFnAttr didn't do the same delegation, which led to very confusing
behavior. This patch fixes the issue by making CallBase::getFnAttr also
check the function under the same circumstances.
Test changes look (to me) like they're cleaning up redundant attributes
which no longer get specified both on the callee and call. We also clean
up the one ad-hoc implementation of this getter over in InlineCost.cpp.
Differential Revision: https://reviews.llvm.org/D122821
This introduces a new "ptrauth" operand bundle to be used in
call/invoke. At the IR level, it's semantically equivalent to an
@llvm.ptrauth.auth followed by an indirect call, but it additionally
provides additional hardening, by preventing the intermediate raw
pointer from being exposed.
This mostly adds the IR definition, verifier checks, and support in
a couple of general helper functions. Clang IRGen and backend support
will come separately.
Note that we'll eventually want to support this bundle in indirectbr as
well, for similar reasons. indirectbr currently doesn't support bundles
at all, and the IR data structures need to be updated to allow that.
Differential Revision: https://reviews.llvm.org/D113685
New method `FCmpInst::compare` is added, which evaluates the given
compare predicate for constant operands. Interface is made similar to
`ICmpInst::compare`.
Differential Revision: https://reviews.llvm.org/D116168
These are deprecated and should be replaced with getAlign().
Some of these asserts don't do anything because Load/Store/AllocaInst never have a 0 align value.
When we have an actual shuffle, we can impose the additional restriction
that the mask replicates the elements of the first operand, so we know
the replication factor as a ratio of output and op0 vector sizes.
Avid readers of this saga may recall from previous installments,
that replication mask replicates (lol) each of the `VF` elements
in a vector `ReplicationFactor` times. For example, the mask for
`ReplicationFactor=3` and `VF=4` is: `<0,0,0,1,1,1,2,2,2,3,3,3>`.
More importantly, replication mask is used by LoopVectorizer
when using masked interleaved memory operations.
As discussed in previous installments, while it is used by LV,
and we **seem** to support masked interleaved memory operations on X86,
it's support in cost model leaves a lot to be desired:
until basically yesterday even for AVX512 we had no cost model for it.
As it has been witnessed in the recent
AVX2 `X86TTIImpl::getInterleavedMemoryOpCost()`
costmodel patches, while it is hard-enough to query the cost
of a particular assembly sequence [from llvm-mca],
afterwards the check lines LV costmodel tests must be updated manually.
This is, at the very least, boring.
Okay, now we have decent costmodel coverage for interleaving shuffles,
but now basically the same mind-killing sequence has to be performed
for replication mask. I think we can improve at least the second half
of the problem, by teaching
the `TargetTransformInfoImplCRTPBase::getUserCost()` to recognize
`Instruction::ShuffleVector` that are repetition masks,
adding exhaustive test coverage
using `-cost-model -analyze` + `utils/update_analyze_test_checks.py`
This way we can have good exhaustive coverage for cost model,
and only basic coverage for the LV costmodel.
This patch adds precise undef-aware `isReplicationMask()`,
with exhaustive test coverage.
* `InstructionsTest.ShuffleMaskIsReplicationMask` shows that
it correctly detects all the known masks.
* `InstructionsTest.ShuffleMaskIsReplicationMask_undef`
shows that replacing some mask elements in a known replication mask
still allows us to recognize it as a replication mask.
Note, with enough undef elts, we may detect a different tuple.
* `InstructionsTest.ShuffleMaskIsReplicationMask_Exhaustive_Correctness`
shows that if we detected the replication mask with given params,
then if we actually generate a true replication mask with said params,
it matches element-wise ignoring undef mask elements.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D113214
As noted in https://reviews.llvm.org/D90924#inline-1076197
apparently this is a pretty common pattern,
let's not repeat it yet again, but have it in a common place.
There may be some more places where it could be used,
but these are the most obvious ones.
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
A logic incompleteness may lead MemorySSA to be too conservative
in its results. Specifically, when dealing with a call of kind
`call i32 bitcast (i1 (i1)* @test to i32 (i32)*)(i32 %1)`, where
the function `test` is declared with readonly attribute, the
bitcast is not looked through, obscuring function attributes. Hence,
some methods of CallBase (e.g., doesNotReadMemory) could provide
suboptimal results.
Differential Revision: https://reviews.llvm.org/D109888
One of the two inputs of the Shufflevector is often a placeholder.
Previously, there were cases where the placeholder was undef, and there were cases where it was poison.
I added these constructors to create a placeholder consistently.
Changing to use the newly added constructor will be written in a separate patch.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D110146
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
Index is 0 when the return value has the returned attribute. But the
return value cannot have the returned attribute, so the check is
pointless.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D109334
This patch adds an initial ShuffleVectorInst::isInsertSubvectorMask helper to recognize 2-op shuffles where the lowest elements of one of the sources are being inserted into the "in-place" other operand, this includes "concat_vectors" patterns as can be seen in the Arm shuffle cost changes. This also helped fix a x86 issue with irregular/length-changing SK_InsertSubvector costs - I'm hoping this will help with D107188
This doesn't currently attempt to work with 1-op shuffles that could either be a "widening" shuffle or a self-insertion.
The self-insertion case is tricky, but we currently always match this with the existing SK_PermuteSingleSrc logic.
The widening case will be addressed in a follow up patch that treats the cost as 0.
Masks with a high number of undef elts will still struggle to match optimal subvector widths - its currently bounded by minimum-width possible insertion, whilst some cases would benefit from wider (pow2?) subvectors.
Differential Revision: https://reviews.llvm.org/D107228
Add tests for D105088, as well as an option to disable the
(generally) unsound inttoptr of ptrtoint optimization.
Differential Revision: https://reviews.llvm.org/D105771
Fix the use-list-order for br instructions by setting the operands in
order of their index to match the use-list-order prediction. The case
where this matters is when there is a condition but the if-true and
if-false branches are identical.
Bug was found when reviewing failures pointed at by
https://reviews.llvm.org/D104950. Fix is similar to
3cf415c6c367ced43175ebd1dc4bd9582c7f5376.
Differential Revision: https://reviews.llvm.org/D104959
This is a partial reapply of the original commit and the followup commit
that were previously reverted; this reapply also includes a small fix
for a potential source of non-determinism, but also has a small change
to turn off variadic debug value salvaging, to ensure that any future
revert/reapply steps to disable and renable this feature do not risk
causing conflicts.
Differential Revision: https://reviews.llvm.org/D91722
This reverts commit 386b66b2fc297cda121a3cc8a36887a6ecbcfc68.
Fix the use-list-order for call and invoke instructions by setting the
operands in order of their index. This matches the use-list-order
prediction. Note that the verifier precludes sharing operands in callbr
(so there was no bug to fix), but that code was updated for consistency.
Bug was found during review of https://reviews.llvm.org/D104740.
Differential Revision: https://reviews.llvm.org/D104805
This adds support for addrspace casts involving opaque pointers to
InstCombine, as well as the isEliminableCastPair() helper
(otherwise the assertion failure would just move there).
Add PointerType::hasSameElementTypeAs() to hide the element type
details.
Differential Revision: https://reviews.llvm.org/D104668
> This reapplies c0f3dfb9, which was reverted following the discovery of
> crashes on linux kernel and chromium builds - these issues have since
> been fixed, allowing this patch to re-land.
This reverts commit 36ec97f76ac0d8be76fb16ac521f55126766267d.
The change caused non-determinism in the compiler, see comments on the code
review at https://reviews.llvm.org/D91722.
Reverting to unbreak people's builds until that can be addressed.
This also reverts the follow-up "[DebugInfo] Limit the number of values
that may be referenced by a dbg.value" in
a0bd6105d80698c53ceaa64bbe6e3b7e7bbf99ee.
FullTy is only necessary when we need to figure out what type an
instruction works with given a pointer's pointee type. However, we just
end up using the value operand's type, so FullTy isn't necessary.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102788
These checks already exist as asserts when creating the corresponding
instruction. Anybody creating these instructions already need to take
care to not break these checks.
Move the checks for success/failure ordering in cmpxchg from the
verifier to the LLParser and BitcodeReader plus an assert.
Add some tests for cmpxchg ordering. The .bc files are created from the
.ll files with an llvm-as with these checks disabled.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102803
This reapplies c0f3dfb9, which was reverted following the discovery of
crashes on linux kernel and chromium builds - these issues have since
been fixed, allowing this patch to re-land.
This reverts commit 4397b7095d640f9b9426c4d0135e999c5a1de1c5.
FullTy is only necessary when we need to figure out what type an
instruction works with given a pointer's pointee type. However, we just
end up using the value operand's type, so FullTy isn't necessary.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102788