(Reapply after revert in e9ce1a588030d8d4004f5d7e443afe46245e9a92 due to
Fuchsia test failures. Removed changes in lib/ExecutionEngine/ other
than error categories, to be checked in more detail and reapplied
separately.)
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
Bulk remove many of the more trivial uses of ManagedStatic in the llvm
directory, either by defining a new getter function or, in many cases,
moving the static variable directly into the only function that uses it.
Differential Revision: https://reviews.llvm.org/D129120
Not deleting the loose instruction with metadata associated to it causes
an assertion when the LLVMContext is destroyed. This was previously
hidden by the fact that llvm-c-test does not call LLVMShutdown. The
planned removal of ManagedStatic exposed this issue.
Differential Revision: https://reviews.llvm.org/D129114
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
D128820 stopped creating div/rem constant expressions by default;
this patch removes support for them entirely.
The getUDiv(), getExactUDiv(), getSDiv(), getExactSDiv(), getURem()
and getSRem() on ConstantExpr are removed, and ConstantExpr::get()
now only accepts binary operators for which
ConstantExpr::isSupportedBinOp() returns true. Uses of these methods
may be replaced either by corresponding IRBuilder methods, or
ConstantFoldBinaryOpOperands (if a constant result is required).
On the C API side, LLVMConstUDiv, LLVMConstExactUDiv, LLVMConstSDiv,
LLVMConstExactSDiv, LLVMConstURem and LLVMConstSRem are removed and
corresponding LLVMBuild methods should be used.
Importantly, this also means that constant expressions can no longer
trap! This patch still keeps the canTrap() method to minimize diff --
I plan to drop it in a separate NFC patch.
Differential Revision: https://reviews.llvm.org/D129148
This removes the insertvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
This is very similar to the extractvalue removal from D125795.
insertvalue is also not supported in bitcode, so no auto-ugprade
is necessary.
ConstantExpr::getInsertValue() can be replaced with
IRBuilder::CreateInsertValue() or ConstantFoldInsertValueInstruction(),
depending on whether a constant result is required (with the latter
being fallible).
The ConstantExpr::hasIndices() and ConstantExpr::getIndices()
methods also go away here, because there are no longer any constant
expressions with indices.
Differential Revision: https://reviews.llvm.org/D128719
This removes the extractvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
extractvalue is already not supported in bitcode, so we do not need
to worry about bitcode auto-upgrade.
Uses of ConstantExpr::getExtractValue() should be replaced with
IRBuilder::CreateExtractValue() (if the fact that the result is
constant is not important) or ConstantFoldExtractValueInstruction()
(if it is). Though for this particular case, it is also possible
and usually preferable to use getAggregateElement() instead.
The C API function LLVMConstExtractValue() is removed, as the
underlying constant expression no longer exists. Instead,
LLVMBuildExtractValue() should be used (which will constant fold
or create an instruction). Depending on the use-case,
LLVMGetAggregateElement() may also be used instead.
Differential Revision: https://reviews.llvm.org/D125795
This adds LLVMGetAggregateElement() as a wrapper for
Constant::getAggregateElement(), which allows fetching a
struct/array/vector element without handling different possible
underlying representations.
As the changed echo test shows, previously you for example had to
treat ConstantArray (use LLVMGetOperand) and ConstantDataArray
(use LLVMGetElementAsConstant) separately, not to mention all the
other possible representations (like PoisonValue).
I've deprecated LLVMGetElementAsConstant() in favor of the new
function, which is strictly more powerful (but I could be convinced
to drop the deprecation).
This is partly motivated by https://reviews.llvm.org/D125795,
which drops LLVMConstExtractValue() because the underlying constant
expression no longer exists. This function could previously be used
as a poor man's getAggregateElement().
Differential Revision: https://reviews.llvm.org/D128417
This is based on https://reviews.llvm.org/D125168 which adds a
wrapper to allow use of opaque pointers from the C API.
I added an opaque pointer mode test to echo.ll, and to fix assertions
that forbid the use of mixed typed and opaque pointers that were
triggering in it I had to also add wrappers for setOpaquePointers()
and isOpaquePointer().
I also changed echo.ll to remove a bitcast i32* %x to i8*, because
passing it through llvm-as and llvm-dis was generating a
%0 = bitcast ptr %x to ptr, but when building that same bitcast in
echo.cpp it was getting elided by IRBuilderBase::CreateCast
(08ac661248/llvm/include/llvm/IR/IRBuilder.h (L1998-L1999)).
Differential Revision: https://reviews.llvm.org/D125183
As implemented this patch assumes that Typed pointer support remains in
the llvm::PointerType class, however this could be modified to use a
different subclass of llvm::Type that could be disallowed from use in
other contexts.
This does not rely on inserting typed pointers into the Module, it just
uses the llvm::PointerType class to track and unique types.
Fixes#54918
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D122268
Based on the output of include-what-you-use.
This is a big chunk of changes. It is very likely to break downstream code
unless they took a lot of care in avoiding hidden ehader dependencies, something
the LLVM codebase doesn't do that well :-/
I've tried to summarize the biggest change below:
- llvm/include/llvm-c/Core.h: no longer includes llvm-c/ErrorHandling.h
- llvm/IR/DIBuilder.h no longer includes llvm/IR/DebugInfo.h
- llvm/IR/IRBuilder.h no longer includes llvm/IR/IntrinsicInst.h
- llvm/IR/LLVMRemarkStreamer.h no longer includes llvm/Support/ToolOutputFile.h
- llvm/IR/LegacyPassManager.h no longer include llvm/Pass.h
- llvm/IR/Type.h no longer includes llvm/ADT/SmallPtrSet.h
- llvm/IR/PassManager.h no longer includes llvm/Pass.h nor llvm/Support/Debug.h
And the usual count of preprocessed lines:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/IR/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 6400831
after: 6189948
200k lines less to process is no that bad ;-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D118652
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
This method is intended for use in places that cannot be reached
with opaque pointers, or part of deprecated methods. This makes
it easier to see that some uses of getPointerElementType() don't
need further action.
Differential Revision: https://reviews.llvm.org/D117870
I tried to look over the file and didn't see any other non-use of *Len variables.
Reviewed By: deadalnix
Differential Revision: https://reviews.llvm.org/D116482
As requested in D115787, I've added a test for LLVMConstGEP2 and
LLVMConstInBoundsGEP2. However, to make this work in the echo test,
I also had to change a couple of APIs to work on GEP operators,
rather than only GEP instructions.
Differential Revision: https://reviews.llvm.org/D115858
Weirdly, the opaque pointer compatible variants LLVMConstGEP2 and
LLVMConstInBoundsGEP2 were already declared in the header, but not
actually implemented. This adds the missing implementations and
deprecates the incompatible functions.
Differential Revision: https://reviews.llvm.org/D115787
Avoid the use of deprecated (opaque pointer incompatible) APIs
in C API tests, in preparation for header deprecation. Add a
LLVMGetGEPSourceElementType() to cover a bit of functionality
that is necessary for the echo test.
This change is split out from https://reviews.llvm.org/D114936.
Deprecate LLVMAddAlias in favor of LLVMAddAlias2, which accepts a
value type and an address space. Previously these were extracted
from the pointer type.
Differential Revision: https://reviews.llvm.org/D114860
IRBuilder has been updated to support preserving metdata in a more
general manner. This patch adds `LLVMAddMetadataToInst` and
deprecates `LLVMSetInstDebugLocation` in favor of the more
general function.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D93454
Ensure that we provide a `Module` when checking if a rename of an intrinsic is necessary.
This fixes the issue that was detected by https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32288
(as mentioned by @fhahn), after committing D91250.
Note that the `LLVMIntrinsicCopyOverloadedName` is being deprecated in favor of `LLVMIntrinsicCopyOverloadedName2`.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99173
Previously APFloat::convertToDouble may be called only for APFloats that
were built using double semantics. Other semantics like single precision
were not allowed although corresponding numbers could be converted to
double without loss of precision. The similar restriction applied to
APFloat::convertToFloat.
With this change any APFloat that can be precisely represented by double
can be handled with convertToDouble. Behavior of convertToFloat was
updated similarly. It make the conversion operations more convenient and
adds support for formats like half and bfloat.
Differential Revision: https://reviews.llvm.org/D102671
I've taken the following steps to add unwinding support from inline assembly:
1) Add a new `unwind` "attribute" (like `sideeffect`) to the asm syntax:
```
invoke void asm sideeffect unwind "call thrower", "~{dirflag},~{fpsr},~{flags}"()
to label %exit unwind label %uexit
```
2.) Add Bitcode writing/reading support + LLVM-IR parsing.
3.) Emit EHLabels around inline assembly lowering (SelectionDAGBuilder + GlobalISel) when `InlineAsm::canThrow` is enabled.
4.) Tweak InstCombineCalls/InlineFunction pass to not mark inline assembly "calls" as nounwind.
5.) Add clang support by introducing a new clobber: "unwind", which lower to the `canThrow` being enabled.
6.) Don't allow unwinding callbr.
Reviewed By: Amanieu
Differential Revision: https://reviews.llvm.org/D95745
Problem:
On SystemZ we need to open text files in text mode. On Windows, files opened in text mode adds a CRLF '\r\n' which may not be desirable.
Solution:
This patch adds two new flags
- OF_CRLF which indicates that CRLF translation is used.
- OF_TextWithCRLF = OF_Text | OF_CRLF indicates that the file is text and uses CRLF translation.
Developers should now use either the OF_Text or OF_TextWithCRLF for text files and OF_None for binary files. If the developer doesn't want carriage returns on Windows, they should use OF_Text, if they do want carriage returns on Windows, they should use OF_TextWithCRLF.
So this is the behaviour per platform with my patch:
z/OS:
OF_None: open in binary mode
OF_Text : open in text mode
OF_TextWithCRLF: open in text mode
Windows:
OF_None: open file with no carriage return
OF_Text: open file with no carriage return
OF_TextWithCRLF: open file with carriage return
The Major change is in llvm/lib/Support/Windows/Path.inc to only set text mode if the OF_CRLF is set.
```
if (Flags & OF_CRLF)
CrtOpenFlags |= _O_TEXT;
```
These following files are the ones that still use OF_Text which I left unchanged. I modified all these except raw_ostream.cpp in recent patches so I know these were previously in Binary mode on Windows.
./llvm/lib/Support/raw_ostream.cpp
./llvm/lib/TableGen/Main.cpp
./llvm/tools/dsymutil/DwarfLinkerForBinary.cpp
./llvm/unittests/Support/Path.cpp
./clang/lib/StaticAnalyzer/Core/HTMLDiagnostics.cpp
./clang/lib/Frontend/CompilerInstance.cpp
./clang/lib/Driver/Driver.cpp
./clang/lib/Driver/ToolChains/Clang.cpp
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D99426
And then push those change throughout LLVM.
Keep the old signature in Clang's CGBuilder for now -- that will be
updated in a follow-on patch (D97224).
The MLIR LLVM-IR dialect is not updated to support the new alignment
attribute, but preserves its existing behavior.
Differential Revision: https://reviews.llvm.org/D97223
The x86_amx is used for AMX intrisics. <256 x i32> is bitcast to x86_amx when
it is used by AMX intrinsics, and x86_amx is bitcast to <256 x i32> when it
is used by load/store instruction. So amx intrinsics only operate on type x86_amx.
It can help to separate amx intrinsics from llvm IR instructions (+-*/).
Thank Craig for the idea. This patch depend on https://reviews.llvm.org/D87981.
Differential Revision: https://reviews.llvm.org/D91927
There's a small number of users of this function, they are all updated.
This updates the C API adding a new method LLVMGetTypeByName2 that takes a context and a name.
Differential Revision: https://reviews.llvm.org/D78793
Define ConstantData::PoisonValue.
Add support for poison value to LLLexer/LLParser/BitcodeReader/BitcodeWriter.
Add support for poison value to llvm-c interface.
Add support for poison value to OCaml binding.
Add m_Poison in PatternMatch.
Differential Revision: https://reviews.llvm.org/D71126
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.
When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.
In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
advantage of `dso_local_equivalent` for relative references
This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.
See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.
Differential Revision: https://reviews.llvm.org/D77248
This adds support for scalable vector types in the C API and in
llvm-c-test, and also adds a test to ensure that llvm-c-test can properly
roundtrip operations involving scalable vectors.
While creating this diff, I discovered that the C API cannot properly roundtrip
_constant expressions_ involving shufflevector / scalable vectors, but that
seems to be a separate enough issue that I plan to address it in a future diff
(unless reviewers feel it should be addressed here).
Differential Revision: https://reviews.llvm.org/D89816
Now there are two main classes in Value hierarchy, which support metadata,
these are Instruction and GlobalObject. They implement different APIs for
metadata manipulation, which however overlap. This change moves metadata
manipulation code into Value, so descendant classes can use this code for
their operations on metadata.
No functional changes intended.
Differential Revision: https://reviews.llvm.org/D67626
This reverts commit eb9f7c28e5fe6d75fed3587023e17f2997c8024b.
Previously this was incorrectly handling linking of the contained
type, so this merges the fixes from D88973.
It is not a good idea to expose raw constants in the LLVM C API. Replace this with an explicit getter.
Differential Revision: https://reviews.llvm.org/D88367
This commit fixes a regression (from LLVM 10 to LLVM 11 RC3) in the LLVM
C API.
Previously, commit 1ee6ec2bf removed the mask operand from the
ShuffleVector instruction, storing the mask data separately in the
instruction instead; this reduced the number of operands of
ShuffleVector from 3 to 2. AFAICT, this change unintentionally caused
a regression in the LLVM C API. Specifically, it is no longer possible
to get the mask of a ShuffleVector instruction through the C API. This
patch introduces new functions which together allow a C API user to get
the mask of a ShuffleVector instruction, restoring the functionality
which was previously available through LLVMGetOperand().
This patch also adds tests for this change to the llvm-c-test
executable, which involved adding support for InsertElement,
ExtractElement, and ShuffleVector itself (as well as constant vectors)
to echo.cpp. Previously, vector operations weren't tested at all in
echo.ll.
I also fixed some typos in comments and help-text nearby these changes,
which I happened to spot while developing this patch. Since the typo
fixes are technically unrelated other than being in the same files, I'm
happy to take them out if you'd rather they not be included in the patch.
Differential Revision: https://reviews.llvm.org/D88190