- Add ObjcMessageExpr::getSelector(), getClassName().
- Change Sema::getObjCInterfaceDecl() to simply take an IdentifierInfo (no Scope needed).
- Remove FIXME for printing ObjCMessageExpr's.
llvm-svn: 42543
- Add ObjcMessageExpr AST node and associated constructors.
- Add SourceLocation's to ActOnKeywordMessage/ActOnUnaryMessage API.
- Instantiate message expressions...
- Replace alloca usage with SmallString.
Next step, installing a correct type, among other tweaks...
llvm-svn: 42116
be passed as an (optional) argument to StmtPrinter to customize
printing of AST nodes.
Used new PrinterHelper interface to enhance printing and visualization
of CFGs. The CFGs now illustrate the semantic connectives between
statements and terminators, wheras in the previous printing certain
expressions would (visible) be printed multiple times to reflect which
expressions used the results of other expressions.
The end result is that the CFG is easier to read for flow of
expression values (following principles similar to the LLVM IR).
llvm-svn: 41651
to getBase and getIdx. getBase and getIdx now return a "normalized" view
of the expression (e.g., always "A[4]" instead of possibly "4[A]"). getLHS
and getRHS return the expressions with syntactic fidelity to the original
source code.
Also modified client code of ArraySubscriptExpr, including the AST dumper
and pretty printer, the return-stack value checker, and the LLVM code
generator.
llvm-svn: 41180
the AST in a structural, non-pretty, form useful for understanding
the AST. It isn't quite done yet, but is already somewhat useful.
For this example:
int test(short X, long long Y) {
return X < ((100));
}
we get (with -parse-ast-dump):
int test(short X, long long Y)
(CompoundStmt 0x2905ce0
(ReturnStmt 0x2905cd0
(BinaryOperator 0x2905cb0 '<'
(ImplicitCastExpr 0x2905ca0
(DeclRefExpr 0x2905c20 Decl='X' 0x2905bb0))
(ParenExpr 0x2905c80
(ParenExpr 0x2905c60
(IntegerLiteral 0x2905c40 100))))))
llvm-svn: 40954
We still need to do sematic analysis (and implement initializers), however this
should complete the parsing & ast building for compound literals.
llvm-svn: 40067
the result type of the expr node.
Implement isIntegerConstantExpr for ImplicitCastExpr nodes the same
was as for CastExpr nodes.
Implement proper sign/zero extension as well as truncation and noop
conversion in the i-c-e evaluator. This allows us to correctly
handle i-c-e's like these:
char array[1024/(sizeof (long))];
int x['\xBb' == (char) 187 ? 1: -1];
this implements test/Sema/i-c-e2.c
llvm-svn: 39888
- Fixed a recent regression discovered by Keith Bauer (thanks!).
The fix involved adding (back) two arguments to UsualArithmeticConversions.
Without the reference arguments, no unary conversions were being passed back
to the caller. This had the effect of turning off the UsualUnaryConversions.
- Refactored CheckAssignmentConstraints into 3 functions. CheckAssignmentConstraints,
CheckSingleAssignmentConstraints, and CheckCompoundAssignmentConstraints.
- Changed the argument type of DefaultFunctionArrayConversion from QualType->Expr*&.
- Removed a bunch of casts in routines I was working on (cleanup).
- Fixed the visitor for ImplicitCastExpr (oops).
llvm-svn: 39840
code generator. Source translation tools can simply ignore this node.
- Added a new Expr node, ImplicitCastExpr.
- Changed UsualUnaryConversions/UsualArithmeticConversions to take references
to Expr *'s. This will allow these routines to instantiate the new AST node
and pass it back.
- Changed all clients of UsualUnary/UsualArithmetic (lot's of diff's).
- Changed some names in CheckConditionalOperands. Several variables where
only distinguished by their case (e.g. Cond, cond). Yuck (what was I thinking).
- Removed an old/crufty constructor in CastExpr (cleanup).
This check-in does not actually create the new AST node. I wanted to separate
the mechanical changes from the semantic changes. In addition, I need to
coordinate with Chris, since the semantic change will break the code generator.
llvm-svn: 39814
Both in one patch, and the test case that Chris didn't commit last
time is in there too...
I'll split the patch up if somebody wants it split."
Patch by Keith Bauer.
llvm-svn: 39796
out of the llvm namespace. This makes the clang namespace be a sibling of
llvm instead of being a child.
The good thing about this is that it makes many things unambiguous. The
bad things is that many things in the llvm namespace (notably data structures
like smallvector) now require an llvm:: qualifier. IMO, libsystem and libsupport
should be split out of llvm into their own namespace in the future, which will fix
this issue.
llvm-svn: 39659