//===- LTO.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "LTO.h" #include "Config.h" #include "InputFiles.h" #include "SymbolTable.h" #include "Symbols.h" #include "lld/Common/Args.h" #include "lld/Common/CommonLinkerContext.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Filesystem.h" #include "lld/Common/Strings.h" #include "lld/Common/TargetOptionsCommandFlags.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/LTO/Config.h" #include "llvm/LTO/LTO.h" #include "llvm/Support/Caching.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include using namespace llvm; using namespace llvm::object; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; static std::string getThinLTOOutputFile(Ctx &ctx, StringRef modulePath) { return lto::getThinLTOOutputFile(modulePath, ctx.arg.thinLTOPrefixReplaceOld, ctx.arg.thinLTOPrefixReplaceNew); } static lto::Config createConfig(Ctx &ctx) { lto::Config c; // LLD supports the new relocations and address-significance tables. c.Options = initTargetOptionsFromCodeGenFlags(); c.Options.EmitAddrsig = true; for (StringRef C : ctx.arg.mllvmOpts) c.MllvmArgs.emplace_back(C.str()); // Always emit a section per function/datum with LTO. c.Options.FunctionSections = true; c.Options.DataSections = true; // Check if basic block sections must be used. // Allowed values for --lto-basic-block-sections are "all", // "", or none. This is the equivalent // of -fbasic-block-sections= flag in clang. if (!ctx.arg.ltoBasicBlockSections.empty()) { if (ctx.arg.ltoBasicBlockSections == "all") { c.Options.BBSections = BasicBlockSection::All; } else if (ctx.arg.ltoBasicBlockSections == "labels") { c.Options.BBAddrMap = true; Warn(ctx) << "'--lto-basic-block-sections=labels' is deprecated; Please use " "'--lto-basic-block-address-map' instead"; } else if (ctx.arg.ltoBasicBlockSections == "none") { c.Options.BBSections = BasicBlockSection::None; } else { ErrorOr> MBOrErr = MemoryBuffer::getFile(ctx.arg.ltoBasicBlockSections.str()); if (!MBOrErr) { ErrAlways(ctx) << "cannot open " << ctx.arg.ltoBasicBlockSections << ":" << MBOrErr.getError().message(); } else { c.Options.BBSectionsFuncListBuf = std::move(*MBOrErr); } c.Options.BBSections = BasicBlockSection::List; } } c.Options.BBAddrMap = ctx.arg.ltoBBAddrMap; c.Options.UniqueBasicBlockSectionNames = ctx.arg.ltoUniqueBasicBlockSectionNames; if (auto relocModel = getRelocModelFromCMModel()) c.RelocModel = *relocModel; else if (ctx.arg.relocatable) c.RelocModel = std::nullopt; else if (ctx.arg.isPic) c.RelocModel = Reloc::PIC_; else c.RelocModel = Reloc::Static; c.CodeModel = getCodeModelFromCMModel(); c.DisableVerify = ctx.arg.disableVerify; c.DiagHandler = diagnosticHandler; c.OptLevel = ctx.arg.ltoo; c.CPU = getCPUStr(); c.MAttrs = getMAttrs(); c.CGOptLevel = ctx.arg.ltoCgo; c.PTO.LoopVectorization = c.OptLevel > 1; c.PTO.SLPVectorization = c.OptLevel > 1; // Set up a custom pipeline if we've been asked to. c.OptPipeline = std::string(ctx.arg.ltoNewPmPasses); c.AAPipeline = std::string(ctx.arg.ltoAAPipeline); // Set up optimization remarks if we've been asked to. c.RemarksFilename = std::string(ctx.arg.optRemarksFilename); c.RemarksPasses = std::string(ctx.arg.optRemarksPasses); c.RemarksWithHotness = ctx.arg.optRemarksWithHotness; c.RemarksHotnessThreshold = ctx.arg.optRemarksHotnessThreshold; c.RemarksFormat = std::string(ctx.arg.optRemarksFormat); // Set up output file to emit statistics. c.StatsFile = std::string(ctx.arg.optStatsFilename); c.SampleProfile = std::string(ctx.arg.ltoSampleProfile); for (StringRef pluginFn : ctx.arg.passPlugins) c.PassPlugins.push_back(std::string(pluginFn)); c.DebugPassManager = ctx.arg.ltoDebugPassManager; c.DwoDir = std::string(ctx.arg.dwoDir); c.HasWholeProgramVisibility = ctx.arg.ltoWholeProgramVisibility; c.ValidateAllVtablesHaveTypeInfos = ctx.arg.ltoValidateAllVtablesHaveTypeInfos; c.AllVtablesHaveTypeInfos = ctx.ltoAllVtablesHaveTypeInfos; c.AlwaysEmitRegularLTOObj = !ctx.arg.ltoObjPath.empty(); c.KeepSymbolNameCopies = false; for (const llvm::StringRef &name : ctx.arg.thinLTOModulesToCompile) c.ThinLTOModulesToCompile.emplace_back(name); c.TimeTraceEnabled = ctx.arg.timeTraceEnabled; c.TimeTraceGranularity = ctx.arg.timeTraceGranularity; c.CSIRProfile = std::string(ctx.arg.ltoCSProfileFile); c.RunCSIRInstr = ctx.arg.ltoCSProfileGenerate; c.PGOWarnMismatch = ctx.arg.ltoPGOWarnMismatch; if (ctx.arg.emitLLVM) { c.PreCodeGenModuleHook = [&ctx](size_t task, const Module &m) { if (std::unique_ptr os = openLTOOutputFile(ctx.arg.outputFile)) WriteBitcodeToFile(m, *os, false); return false; }; } if (ctx.arg.ltoEmitAsm) { c.CGFileType = CodeGenFileType::AssemblyFile; c.Options.MCOptions.AsmVerbose = true; } if (!ctx.arg.saveTempsArgs.empty()) checkError(ctx.e, c.addSaveTemps(ctx.arg.outputFile.str() + ".", /*UseInputModulePath*/ true, ctx.arg.saveTempsArgs)); return c; } BitcodeCompiler::BitcodeCompiler(Ctx &ctx) : ctx(ctx) { // Initialize indexFile. if (!ctx.arg.thinLTOIndexOnlyArg.empty()) indexFile = openFile(ctx.arg.thinLTOIndexOnlyArg); // Initialize ltoObj. lto::ThinBackend backend; auto onIndexWrite = [&](StringRef s) { thinIndices.erase(s); }; if (ctx.arg.thinLTOIndexOnly) { backend = lto::createWriteIndexesThinBackend( llvm::hardware_concurrency(ctx.arg.thinLTOJobs), std::string(ctx.arg.thinLTOPrefixReplaceOld), std::string(ctx.arg.thinLTOPrefixReplaceNew), std::string(ctx.arg.thinLTOPrefixReplaceNativeObject), ctx.arg.thinLTOEmitImportsFiles, indexFile.get(), onIndexWrite); } else { backend = lto::createInProcessThinBackend( llvm::heavyweight_hardware_concurrency(ctx.arg.thinLTOJobs), onIndexWrite, ctx.arg.thinLTOEmitIndexFiles, ctx.arg.thinLTOEmitImportsFiles); } constexpr llvm::lto::LTO::LTOKind ltoModes[3] = {llvm::lto::LTO::LTOKind::LTOK_UnifiedThin, llvm::lto::LTO::LTOKind::LTOK_UnifiedRegular, llvm::lto::LTO::LTOKind::LTOK_Default}; ltoObj = std::make_unique(createConfig(ctx), backend, ctx.arg.ltoPartitions, ltoModes[ctx.arg.ltoKind]); // Initialize usedStartStop. if (ctx.bitcodeFiles.empty()) return; for (Symbol *sym : ctx.symtab->getSymbols()) { if (sym->isPlaceholder()) continue; StringRef s = sym->getName(); for (StringRef prefix : {"__start_", "__stop_"}) if (s.starts_with(prefix)) usedStartStop.insert(s.substr(prefix.size())); } } BitcodeCompiler::~BitcodeCompiler() = default; void BitcodeCompiler::add(BitcodeFile &f) { lto::InputFile &obj = *f.obj; bool isExec = !ctx.arg.shared && !ctx.arg.relocatable; if (ctx.arg.thinLTOEmitIndexFiles) thinIndices.insert(obj.getName()); ArrayRef syms = f.getSymbols(); ArrayRef objSyms = obj.symbols(); std::vector resols(syms.size()); // Provide a resolution to the LTO API for each symbol. for (size_t i = 0, e = syms.size(); i != e; ++i) { Symbol *sym = syms[i]; const lto::InputFile::Symbol &objSym = objSyms[i]; lto::SymbolResolution &r = resols[i]; // Ideally we shouldn't check for SF_Undefined but currently IRObjectFile // reports two symbols for module ASM defined. Without this check, lld // flags an undefined in IR with a definition in ASM as prevailing. // Once IRObjectFile is fixed to report only one symbol this hack can // be removed. r.Prevailing = !objSym.isUndefined() && sym->file == &f; // We ask LTO to preserve following global symbols: // 1) All symbols when doing relocatable link, so that them can be used // for doing final link. // 2) Symbols that are used in regular objects. // 3) C named sections if we have corresponding __start_/__stop_ symbol. // 4) Symbols that are defined in bitcode files and used for dynamic // linking. // 5) Symbols that will be referenced after linker wrapping is performed. r.VisibleToRegularObj = ctx.arg.relocatable || sym->isUsedInRegularObj || sym->referencedAfterWrap || (r.Prevailing && sym->isExported) || usedStartStop.count(objSym.getSectionName()); // Identify symbols exported dynamically, and that therefore could be // referenced by a shared library not visible to the linker. r.ExportDynamic = sym->computeBinding(ctx) != STB_LOCAL && (ctx.arg.exportDynamic || sym->isExported); const auto *dr = dyn_cast(sym); r.FinalDefinitionInLinkageUnit = (isExec || sym->visibility() != STV_DEFAULT) && dr && // Skip absolute symbols from ELF objects, otherwise PC-rel relocations // will be generated by for them, triggering linker errors. // Symbol section is always null for bitcode symbols, hence the check // for isElf(). Skip linker script defined symbols as well: they have // no File defined. !(dr->section == nullptr && (sym->file->isInternal() || sym->file->isElf())); if (r.Prevailing) Undefined(ctx.internalFile, StringRef(), STB_GLOBAL, STV_DEFAULT, sym->type) .overwrite(*sym); // We tell LTO to not apply interprocedural optimization for wrapped // (with --wrap) symbols because otherwise LTO would inline them while // their values are still not final. r.LinkerRedefined = sym->scriptDefined; } checkError(ctx.e, ltoObj->add(std::move(f.obj), resols)); } // If LazyObjFile has not been added to link, emit empty index files. // This is needed because this is what GNU gold plugin does and we have a // distributed build system that depends on that behavior. static void thinLTOCreateEmptyIndexFiles(Ctx &ctx) { DenseSet linkedBitCodeFiles; for (BitcodeFile *f : ctx.bitcodeFiles) linkedBitCodeFiles.insert(f->getName()); for (BitcodeFile *f : ctx.lazyBitcodeFiles) { if (!f->lazy) continue; if (linkedBitCodeFiles.contains(f->getName())) continue; std::string path = replaceThinLTOSuffix(ctx, getThinLTOOutputFile(ctx, f->obj->getName())); std::unique_ptr os = openFile(path + ".thinlto.bc"); if (!os) continue; ModuleSummaryIndex m(/*HaveGVs*/ false); m.setSkipModuleByDistributedBackend(); writeIndexToFile(m, *os); if (ctx.arg.thinLTOEmitImportsFiles) openFile(path + ".imports"); } } // Merge all the bitcode files we have seen, codegen the result // and return the resulting ObjectFile(s). SmallVector, 0> BitcodeCompiler::compile() { unsigned maxTasks = ltoObj->getMaxTasks(); buf.resize(maxTasks); files.resize(maxTasks); filenames.resize(maxTasks); // The --thinlto-cache-dir option specifies the path to a directory in which // to cache native object files for ThinLTO incremental builds. If a path was // specified, configure LTO to use it as the cache directory. FileCache cache; if (!ctx.arg.thinLTOCacheDir.empty()) cache = check(localCache("ThinLTO", "Thin", ctx.arg.thinLTOCacheDir, [&](size_t task, const Twine &moduleName, std::unique_ptr mb) { files[task] = std::move(mb); filenames[task] = moduleName.str(); })); if (!ctx.bitcodeFiles.empty()) checkError(ctx.e, ltoObj->run( [&](size_t task, const Twine &moduleName) { buf[task].first = moduleName.str(); return std::make_unique( std::make_unique( buf[task].second)); }, cache)); // Emit empty index files for non-indexed files but not in single-module mode. if (ctx.arg.thinLTOModulesToCompile.empty()) { for (StringRef s : thinIndices) { std::string path = getThinLTOOutputFile(ctx, s); openFile(path + ".thinlto.bc"); if (ctx.arg.thinLTOEmitImportsFiles) openFile(path + ".imports"); } } if (ctx.arg.thinLTOEmitIndexFiles) thinLTOCreateEmptyIndexFiles(ctx); if (ctx.arg.thinLTOIndexOnly) { if (!ctx.arg.ltoObjPath.empty()) saveBuffer(buf[0].second, ctx.arg.ltoObjPath); // ThinLTO with index only option is required to generate only the index // files. After that, we exit from linker and ThinLTO backend runs in a // distributed environment. if (indexFile) indexFile->close(); return {}; } if (!ctx.arg.thinLTOCacheDir.empty()) pruneCache(ctx.arg.thinLTOCacheDir, ctx.arg.thinLTOCachePolicy, files); if (!ctx.arg.ltoObjPath.empty()) { saveBuffer(buf[0].second, ctx.arg.ltoObjPath); for (unsigned i = 1; i != maxTasks; ++i) saveBuffer(buf[i].second, ctx.arg.ltoObjPath + Twine(i)); } bool savePrelink = ctx.arg.saveTempsArgs.contains("prelink"); SmallVector, 0> ret; const char *ext = ctx.arg.ltoEmitAsm ? ".s" : ".o"; for (unsigned i = 0; i != maxTasks; ++i) { StringRef bitcodeFilePath; StringRef objBuf; if (files[i]) { // When files[i] is not null, we get the native relocatable file from the // cache. filenames[i] contains the original BitcodeFile's identifier. objBuf = files[i]->getBuffer(); bitcodeFilePath = filenames[i]; } else { // Get the native relocatable file after in-process LTO compilation. objBuf = buf[i].second; bitcodeFilePath = buf[i].first; } if (objBuf.empty()) continue; // If the input bitcode file is path/to/x.o and -o specifies a.out, the // corresponding native relocatable file path will look like: // path/to/a.out.lto.x.o. StringRef ltoObjName; if (bitcodeFilePath == "ld-temp.o") { ltoObjName = ctx.saver.save(Twine(ctx.arg.outputFile) + ".lto" + (i == 0 ? Twine("") : Twine('.') + Twine(i)) + ext); } else { StringRef directory = sys::path::parent_path(bitcodeFilePath); // For an archive member, which has an identifier like "d/a.a(coll.o at // 8)" (see BitcodeFile::BitcodeFile), use the filename; otherwise, use // the stem (d/a.o => a). StringRef baseName = bitcodeFilePath.ends_with(")") ? sys::path::filename(bitcodeFilePath) : sys::path::stem(bitcodeFilePath); StringRef outputFileBaseName = sys::path::filename(ctx.arg.outputFile); SmallString<256> path; sys::path::append(path, directory, outputFileBaseName + ".lto." + baseName + ext); sys::path::remove_dots(path, true); ltoObjName = ctx.saver.save(path.str()); } if (savePrelink || ctx.arg.ltoEmitAsm) saveBuffer(buf[i].second, ltoObjName); if (!ctx.arg.ltoEmitAsm) ret.push_back(createObjFile(ctx, MemoryBufferRef(objBuf, ltoObjName))); } return ret; }