//===- DLL.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines various types of chunks for the DLL import or export // descriptor tables. They are inherently Windows-specific. // You need to read Microsoft PE/COFF spec to understand details // about the data structures. // // If you are not particularly interested in linking against Windows // DLL, you can skip this file, and you should still be able to // understand the rest of the linker. // //===----------------------------------------------------------------------===// #include "DLL.h" #include "COFFLinkerContext.h" #include "Chunks.h" #include "SymbolTable.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Object/COFF.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Path.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::COFF; namespace lld::coff { namespace { // Import table // A chunk for the import descriptor table. class HintNameChunk : public NonSectionChunk { public: HintNameChunk(StringRef n, uint16_t h) : name(n), hint(h) {} size_t getSize() const override { // Starts with 2 byte Hint field, followed by a null-terminated string, // ends with 0 or 1 byte padding. return alignTo(name.size() + 3, 2); } void writeTo(uint8_t *buf) const override { memset(buf, 0, getSize()); write16le(buf, hint); memcpy(buf + 2, name.data(), name.size()); } private: StringRef name; uint16_t hint; }; // A chunk for the import descriptor table. class LookupChunk : public NonSectionChunk { public: explicit LookupChunk(COFFLinkerContext &ctx, Chunk *c) : hintName(c), ctx(ctx) { setAlignment(ctx.config.wordsize); } size_t getSize() const override { return ctx.config.wordsize; } void writeTo(uint8_t *buf) const override { if (ctx.config.is64()) write64le(buf, hintName->getRVA()); else write32le(buf, hintName->getRVA()); } Chunk *hintName; private: COFFLinkerContext &ctx; }; // A chunk for the import descriptor table. // This chunk represent import-by-ordinal symbols. // See Microsoft PE/COFF spec 7.1. Import Header for details. class OrdinalOnlyChunk : public NonSectionChunk { public: explicit OrdinalOnlyChunk(COFFLinkerContext &c, uint16_t v) : ordinal(v), ctx(c) { setAlignment(ctx.config.wordsize); } size_t getSize() const override { return ctx.config.wordsize; } void writeTo(uint8_t *buf) const override { // An import-by-ordinal slot has MSB 1 to indicate that // this is import-by-ordinal (and not import-by-name). if (ctx.config.is64()) { write64le(buf, (1ULL << 63) | ordinal); } else { write32le(buf, (1ULL << 31) | ordinal); } } uint16_t ordinal; private: COFFLinkerContext &ctx; }; // A chunk for the import descriptor table. class ImportDirectoryChunk : public NonSectionChunk { public: explicit ImportDirectoryChunk(Chunk *n) : dllName(n) { setAlignment(4); } size_t getSize() const override { return sizeof(ImportDirectoryTableEntry); } void writeTo(uint8_t *buf) const override { memset(buf, 0, getSize()); auto *e = (coff_import_directory_table_entry *)(buf); e->ImportLookupTableRVA = lookupTab->getRVA(); e->NameRVA = dllName->getRVA(); e->ImportAddressTableRVA = addressTab->getRVA(); } Chunk *dllName; Chunk *lookupTab; Chunk *addressTab; }; // A chunk representing null terminator in the import table. // Contents of this chunk is always null bytes. class NullChunk : public NonSectionChunk { public: explicit NullChunk(size_t n, uint32_t align) : size(n) { setAlignment(align); } explicit NullChunk(COFFLinkerContext &ctx) : NullChunk(ctx.config.wordsize, ctx.config.wordsize) {} explicit NullChunk(COFFLinkerContext &ctx, size_t n) : NullChunk(n, ctx.config.wordsize) {} size_t getSize() const override { return size; } void writeTo(uint8_t *buf) const override { memset(buf, 0, size); } private: size_t size; }; // A chunk for ARM64EC auxiliary IAT. class AuxImportChunk : public NonSectionChunk { public: explicit AuxImportChunk(ImportFile *file) : file(file) { setAlignment(sizeof(uint64_t)); } size_t getSize() const override { return sizeof(uint64_t); } void writeTo(uint8_t *buf) const override { uint64_t impchkVA = 0; if (file->impchkThunk) impchkVA = file->impchkThunk->getRVA() + file->symtab.ctx.config.imageBase; write64le(buf, impchkVA); } void getBaserels(std::vector *res) override { if (file->impchkThunk) res->emplace_back(rva, file->symtab.machine); } private: ImportFile *file; }; static std::vector> binImports(COFFLinkerContext &ctx, const std::vector &imports) { // Group DLL-imported symbols by DLL name because that's how // symbols are laid out in the import descriptor table. auto less = [&ctx](const std::string &a, const std::string &b) { return ctx.config.dllOrder[a] < ctx.config.dllOrder[b]; }; std::map, decltype(less)> m( less); for (DefinedImportData *sym : imports) m[sym->getDLLName().lower()].push_back(sym); std::vector> v; for (auto &kv : m) { // Sort symbols by name for each group. std::vector &syms = kv.second; llvm::sort(syms, [](DefinedImportData *a, DefinedImportData *b) { auto getBaseName = [](DefinedImportData *sym) { StringRef name = sym->getName(); name.consume_front("__imp_"); // Skip aux_ part of ARM64EC function symbol name. if (sym->file->impchkThunk) name.consume_front("aux_"); return name; }; return getBaseName(a) < getBaseName(b); }); v.push_back(std::move(syms)); } return v; } // See Microsoft PE/COFF spec 4.3 for details. // A chunk for the delay import descriptor table etnry. class DelayDirectoryChunk : public NonSectionChunk { public: explicit DelayDirectoryChunk(Chunk *n) : dllName(n) { setAlignment(4); } size_t getSize() const override { return sizeof(delay_import_directory_table_entry); } void writeTo(uint8_t *buf) const override { memset(buf, 0, getSize()); auto *e = (delay_import_directory_table_entry *)(buf); e->Attributes = 1; e->Name = dllName->getRVA(); e->ModuleHandle = moduleHandle->getRVA(); e->DelayImportAddressTable = addressTab->getRVA(); e->DelayImportNameTable = nameTab->getRVA(); } Chunk *dllName; Chunk *moduleHandle; Chunk *addressTab; Chunk *nameTab; }; // Initial contents for delay-loaded functions. // This code calls __delayLoadHelper2 function to resolve a symbol // which then overwrites its jump table slot with the result // for subsequent function calls. static const uint8_t thunkX64[] = { 0x48, 0x8D, 0x05, 0, 0, 0, 0, // lea rax, [__imp_] 0xE9, 0, 0, 0, 0, // jmp __tailMerge_ }; static const uint8_t tailMergeX64[] = { 0x51, // push rcx 0x52, // push rdx 0x41, 0x50, // push r8 0x41, 0x51, // push r9 0x48, 0x83, 0xEC, 0x48, // sub rsp, 48h 0x66, 0x0F, 0x7F, 0x04, 0x24, // movdqa xmmword ptr [rsp], xmm0 0x66, 0x0F, 0x7F, 0x4C, 0x24, 0x10, // movdqa xmmword ptr [rsp+10h], xmm1 0x66, 0x0F, 0x7F, 0x54, 0x24, 0x20, // movdqa xmmword ptr [rsp+20h], xmm2 0x66, 0x0F, 0x7F, 0x5C, 0x24, 0x30, // movdqa xmmword ptr [rsp+30h], xmm3 0x48, 0x8B, 0xD0, // mov rdx, rax 0x48, 0x8D, 0x0D, 0, 0, 0, 0, // lea rcx, [___DELAY_IMPORT_...] 0xE8, 0, 0, 0, 0, // call __delayLoadHelper2 0x66, 0x0F, 0x6F, 0x04, 0x24, // movdqa xmm0, xmmword ptr [rsp] 0x66, 0x0F, 0x6F, 0x4C, 0x24, 0x10, // movdqa xmm1, xmmword ptr [rsp+10h] 0x66, 0x0F, 0x6F, 0x54, 0x24, 0x20, // movdqa xmm2, xmmword ptr [rsp+20h] 0x66, 0x0F, 0x6F, 0x5C, 0x24, 0x30, // movdqa xmm3, xmmword ptr [rsp+30h] 0x48, 0x83, 0xC4, 0x48, // add rsp, 48h 0x41, 0x59, // pop r9 0x41, 0x58, // pop r8 0x5A, // pop rdx 0x59, // pop rcx 0xFF, 0xE0, // jmp rax }; static const uint8_t tailMergeUnwindInfoX64[] = { 0x01, // Version=1, Flags=UNW_FLAG_NHANDLER 0x0a, // Size of prolog 0x05, // Count of unwind codes 0x00, // No frame register 0x0a, 0x82, // Offset 0xa: UWOP_ALLOC_SMALL(0x48) 0x06, 0x02, // Offset 6: UWOP_ALLOC_SMALL(8) 0x04, 0x02, // Offset 4: UWOP_ALLOC_SMALL(8) 0x02, 0x02, // Offset 2: UWOP_ALLOC_SMALL(8) 0x01, 0x02, // Offset 1: UWOP_ALLOC_SMALL(8) 0x00, 0x00 // Padding to align on 32-bits }; static const uint8_t thunkX86[] = { 0xB8, 0, 0, 0, 0, // mov eax, offset ___imp__ 0xE9, 0, 0, 0, 0, // jmp __tailMerge_ }; static const uint8_t tailMergeX86[] = { 0x51, // push ecx 0x52, // push edx 0x50, // push eax 0x68, 0, 0, 0, 0, // push offset ___DELAY_IMPORT_DESCRIPTOR__dll 0xE8, 0, 0, 0, 0, // call ___delayLoadHelper2@8 0x5A, // pop edx 0x59, // pop ecx 0xFF, 0xE0, // jmp eax }; static const uint8_t thunkARM[] = { 0x40, 0xf2, 0x00, 0x0c, // mov.w ip, #0 __imp_ 0xc0, 0xf2, 0x00, 0x0c, // mov.t ip, #0 __imp_ 0x00, 0xf0, 0x00, 0xb8, // b.w __tailMerge_ }; static const uint8_t tailMergeARM[] = { 0x2d, 0xe9, 0x0f, 0x48, // push.w {r0, r1, r2, r3, r11, lr} 0x0d, 0xf2, 0x10, 0x0b, // addw r11, sp, #16 0x2d, 0xed, 0x10, 0x0b, // vpush {d0, d1, d2, d3, d4, d5, d6, d7} 0x61, 0x46, // mov r1, ip 0x40, 0xf2, 0x00, 0x00, // mov.w r0, #0 DELAY_IMPORT_DESCRIPTOR 0xc0, 0xf2, 0x00, 0x00, // mov.t r0, #0 DELAY_IMPORT_DESCRIPTOR 0x00, 0xf0, 0x00, 0xd0, // bl #0 __delayLoadHelper2 0x84, 0x46, // mov ip, r0 0xbd, 0xec, 0x10, 0x0b, // vpop {d0, d1, d2, d3, d4, d5, d6, d7} 0xbd, 0xe8, 0x0f, 0x48, // pop.w {r0, r1, r2, r3, r11, lr} 0x60, 0x47, // bx ip }; static const uint8_t thunkARM64[] = { 0x11, 0x00, 0x00, 0x90, // adrp x17, #0 __imp_ 0x31, 0x02, 0x00, 0x91, // add x17, x17, #0 :lo12:__imp_ 0x00, 0x00, 0x00, 0x14, // b __tailMerge_ }; static const uint8_t tailMergeARM64[] = { 0xfd, 0x7b, 0xb3, 0xa9, // stp x29, x30, [sp, #-208]! 0xfd, 0x03, 0x00, 0x91, // mov x29, sp 0xe0, 0x07, 0x01, 0xa9, // stp x0, x1, [sp, #16] 0xe2, 0x0f, 0x02, 0xa9, // stp x2, x3, [sp, #32] 0xe4, 0x17, 0x03, 0xa9, // stp x4, x5, [sp, #48] 0xe6, 0x1f, 0x04, 0xa9, // stp x6, x7, [sp, #64] 0xe0, 0x87, 0x02, 0xad, // stp q0, q1, [sp, #80] 0xe2, 0x8f, 0x03, 0xad, // stp q2, q3, [sp, #112] 0xe4, 0x97, 0x04, 0xad, // stp q4, q5, [sp, #144] 0xe6, 0x9f, 0x05, 0xad, // stp q6, q7, [sp, #176] 0xe1, 0x03, 0x11, 0xaa, // mov x1, x17 0x00, 0x00, 0x00, 0x90, // adrp x0, #0 DELAY_IMPORT_DESCRIPTOR 0x00, 0x00, 0x00, 0x91, // add x0, x0, #0 :lo12:DELAY_IMPORT_DESCRIPTOR 0x00, 0x00, 0x00, 0x94, // bl #0 __delayLoadHelper2 0xf0, 0x03, 0x00, 0xaa, // mov x16, x0 0xe6, 0x9f, 0x45, 0xad, // ldp q6, q7, [sp, #176] 0xe4, 0x97, 0x44, 0xad, // ldp q4, q5, [sp, #144] 0xe2, 0x8f, 0x43, 0xad, // ldp q2, q3, [sp, #112] 0xe0, 0x87, 0x42, 0xad, // ldp q0, q1, [sp, #80] 0xe6, 0x1f, 0x44, 0xa9, // ldp x6, x7, [sp, #64] 0xe4, 0x17, 0x43, 0xa9, // ldp x4, x5, [sp, #48] 0xe2, 0x0f, 0x42, 0xa9, // ldp x2, x3, [sp, #32] 0xe0, 0x07, 0x41, 0xa9, // ldp x0, x1, [sp, #16] 0xfd, 0x7b, 0xcd, 0xa8, // ldp x29, x30, [sp], #208 0x00, 0x02, 0x1f, 0xd6, // br x16 }; // A chunk for the delay import thunk. class ThunkChunkX64 : public NonSectionCodeChunk { public: ThunkChunkX64(Defined *i, Chunk *tm) : imp(i), tailMerge(tm) {} size_t getSize() const override { return sizeof(thunkX64); } MachineTypes getMachine() const override { return AMD64; } void writeTo(uint8_t *buf) const override { memcpy(buf, thunkX64, sizeof(thunkX64)); write32le(buf + 3, imp->getRVA() - rva - 7); write32le(buf + 8, tailMerge->getRVA() - rva - 12); } Defined *imp = nullptr; Chunk *tailMerge = nullptr; }; class TailMergeChunkX64 : public NonSectionCodeChunk { public: TailMergeChunkX64(Chunk *d, Defined *h) : desc(d), helper(h) {} size_t getSize() const override { return sizeof(tailMergeX64); } MachineTypes getMachine() const override { return AMD64; } void writeTo(uint8_t *buf) const override { memcpy(buf, tailMergeX64, sizeof(tailMergeX64)); write32le(buf + 39, desc->getRVA() - rva - 43); write32le(buf + 44, helper->getRVA() - rva - 48); } Chunk *desc = nullptr; Defined *helper = nullptr; }; class TailMergePDataChunkX64 : public NonSectionChunk { public: TailMergePDataChunkX64(Chunk *tm, Chunk *unwind) : tm(tm), unwind(unwind) { // See // https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64#struct-runtime_function setAlignment(4); } size_t getSize() const override { return 3 * sizeof(uint32_t); } MachineTypes getMachine() const override { return AMD64; } void writeTo(uint8_t *buf) const override { write32le(buf + 0, tm->getRVA()); // TailMergeChunk start RVA write32le(buf + 4, tm->getRVA() + tm->getSize()); // TailMergeChunk stop RVA write32le(buf + 8, unwind->getRVA()); // UnwindInfo RVA } Chunk *tm = nullptr; Chunk *unwind = nullptr; }; class TailMergeUnwindInfoX64 : public NonSectionChunk { public: TailMergeUnwindInfoX64() { // See // https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64#struct-unwind_info setAlignment(4); } size_t getSize() const override { return sizeof(tailMergeUnwindInfoX64); } MachineTypes getMachine() const override { return AMD64; } void writeTo(uint8_t *buf) const override { memcpy(buf, tailMergeUnwindInfoX64, sizeof(tailMergeUnwindInfoX64)); } }; class ThunkChunkX86 : public NonSectionCodeChunk { public: ThunkChunkX86(COFFLinkerContext &ctx, Defined *i, Chunk *tm) : imp(i), tailMerge(tm), ctx(ctx) {} size_t getSize() const override { return sizeof(thunkX86); } MachineTypes getMachine() const override { return I386; } void writeTo(uint8_t *buf) const override { memcpy(buf, thunkX86, sizeof(thunkX86)); write32le(buf + 1, imp->getRVA() + ctx.config.imageBase); write32le(buf + 6, tailMerge->getRVA() - rva - 10); } void getBaserels(std::vector *res) override { res->emplace_back(rva + 1, ctx.config.machine); } Defined *imp = nullptr; Chunk *tailMerge = nullptr; private: const COFFLinkerContext &ctx; }; class TailMergeChunkX86 : public NonSectionCodeChunk { public: TailMergeChunkX86(COFFLinkerContext &ctx, Chunk *d, Defined *h) : desc(d), helper(h), ctx(ctx) {} size_t getSize() const override { return sizeof(tailMergeX86); } MachineTypes getMachine() const override { return I386; } void writeTo(uint8_t *buf) const override { memcpy(buf, tailMergeX86, sizeof(tailMergeX86)); write32le(buf + 4, desc->getRVA() + ctx.config.imageBase); write32le(buf + 9, helper->getRVA() - rva - 13); } void getBaserels(std::vector *res) override { res->emplace_back(rva + 4, ctx.config.machine); } Chunk *desc = nullptr; Defined *helper = nullptr; private: const COFFLinkerContext &ctx; }; class ThunkChunkARM : public NonSectionCodeChunk { public: ThunkChunkARM(COFFLinkerContext &ctx, Defined *i, Chunk *tm) : imp(i), tailMerge(tm), ctx(ctx) { setAlignment(2); } size_t getSize() const override { return sizeof(thunkARM); } MachineTypes getMachine() const override { return ARMNT; } void writeTo(uint8_t *buf) const override { memcpy(buf, thunkARM, sizeof(thunkARM)); applyMOV32T(buf + 0, imp->getRVA() + ctx.config.imageBase); applyBranch24T(buf + 8, tailMerge->getRVA() - rva - 12); } void getBaserels(std::vector *res) override { res->emplace_back(rva + 0, IMAGE_REL_BASED_ARM_MOV32T); } Defined *imp = nullptr; Chunk *tailMerge = nullptr; private: const COFFLinkerContext &ctx; }; class TailMergeChunkARM : public NonSectionCodeChunk { public: TailMergeChunkARM(COFFLinkerContext &ctx, Chunk *d, Defined *h) : desc(d), helper(h), ctx(ctx) { setAlignment(2); } size_t getSize() const override { return sizeof(tailMergeARM); } MachineTypes getMachine() const override { return ARMNT; } void writeTo(uint8_t *buf) const override { memcpy(buf, tailMergeARM, sizeof(tailMergeARM)); applyMOV32T(buf + 14, desc->getRVA() + ctx.config.imageBase); applyBranch24T(buf + 22, helper->getRVA() - rva - 26); } void getBaserels(std::vector *res) override { res->emplace_back(rva + 14, IMAGE_REL_BASED_ARM_MOV32T); } Chunk *desc = nullptr; Defined *helper = nullptr; private: const COFFLinkerContext &ctx; }; class ThunkChunkARM64 : public NonSectionCodeChunk { public: ThunkChunkARM64(Defined *i, Chunk *tm) : imp(i), tailMerge(tm) { setAlignment(4); } size_t getSize() const override { return sizeof(thunkARM64); } MachineTypes getMachine() const override { return ARM64; } void writeTo(uint8_t *buf) const override { memcpy(buf, thunkARM64, sizeof(thunkARM64)); applyArm64Addr(buf + 0, imp->getRVA(), rva + 0, 12); applyArm64Imm(buf + 4, imp->getRVA() & 0xfff, 0); applyArm64Branch26(buf + 8, tailMerge->getRVA() - rva - 8); } Defined *imp = nullptr; Chunk *tailMerge = nullptr; }; class TailMergeChunkARM64 : public NonSectionCodeChunk { public: TailMergeChunkARM64(Chunk *d, Defined *h) : desc(d), helper(h) { setAlignment(4); } size_t getSize() const override { return sizeof(tailMergeARM64); } MachineTypes getMachine() const override { return ARM64; } void writeTo(uint8_t *buf) const override { memcpy(buf, tailMergeARM64, sizeof(tailMergeARM64)); applyArm64Addr(buf + 44, desc->getRVA(), rva + 44, 12); applyArm64Imm(buf + 48, desc->getRVA() & 0xfff, 0); applyArm64Branch26(buf + 52, helper->getRVA() - rva - 52); } Chunk *desc = nullptr; Defined *helper = nullptr; }; // A chunk for the import descriptor table. class DelayAddressChunk : public NonSectionChunk { public: explicit DelayAddressChunk(COFFLinkerContext &ctx, Chunk *c) : thunk(c), ctx(ctx) { setAlignment(ctx.config.wordsize); } size_t getSize() const override { return ctx.config.wordsize; } void writeTo(uint8_t *buf) const override { if (ctx.config.is64()) { write64le(buf, thunk->getRVA() + ctx.config.imageBase); } else { uint32_t bit = 0; // Pointer to thumb code must have the LSB set, so adjust it. if (ctx.config.machine == ARMNT) bit = 1; write32le(buf, (thunk->getRVA() + ctx.config.imageBase) | bit); } } void getBaserels(std::vector *res) override { res->emplace_back(rva, ctx.config.machine); } Chunk *thunk; private: const COFFLinkerContext &ctx; }; // Export table // Read Microsoft PE/COFF spec 5.3 for details. // A chunk for the export descriptor table. class ExportDirectoryChunk : public NonSectionChunk { public: ExportDirectoryChunk(int baseOrdinal, int maxOrdinal, int nameTabSize, Chunk *d, Chunk *a, Chunk *n, Chunk *o) : baseOrdinal(baseOrdinal), maxOrdinal(maxOrdinal), nameTabSize(nameTabSize), dllName(d), addressTab(a), nameTab(n), ordinalTab(o) {} size_t getSize() const override { return sizeof(export_directory_table_entry); } void writeTo(uint8_t *buf) const override { memset(buf, 0, getSize()); auto *e = (export_directory_table_entry *)(buf); e->NameRVA = dllName->getRVA(); e->OrdinalBase = baseOrdinal; e->AddressTableEntries = (maxOrdinal - baseOrdinal) + 1; e->NumberOfNamePointers = nameTabSize; e->ExportAddressTableRVA = addressTab->getRVA(); e->NamePointerRVA = nameTab->getRVA(); e->OrdinalTableRVA = ordinalTab->getRVA(); } uint16_t baseOrdinal; uint16_t maxOrdinal; uint16_t nameTabSize; Chunk *dllName; Chunk *addressTab; Chunk *nameTab; Chunk *ordinalTab; }; class AddressTableChunk : public NonSectionChunk { public: explicit AddressTableChunk(SymbolTable &symtab, size_t baseOrdinal, size_t maxOrdinal) : baseOrdinal(baseOrdinal), size((maxOrdinal - baseOrdinal) + 1), symtab(symtab) {} size_t getSize() const override { return size * 4; } void writeTo(uint8_t *buf) const override { memset(buf, 0, getSize()); for (const Export &e : symtab.exports) { assert(e.ordinal >= baseOrdinal && "Export symbol has invalid ordinal"); // Subtract the OrdinalBase to get the index. uint8_t *p = buf + (e.ordinal - baseOrdinal) * 4; uint32_t bit = 0; // Pointer to thumb code must have the LSB set, so adjust it. if (symtab.machine == ARMNT && !e.data) bit = 1; if (e.forwardChunk) { write32le(p, e.forwardChunk->getRVA() | bit); } else { assert(cast(e.sym)->getRVA() != 0 && "Exported symbol unmapped"); write32le(p, cast(e.sym)->getRVA() | bit); } } } private: size_t baseOrdinal; size_t size; const SymbolTable &symtab; }; class NamePointersChunk : public NonSectionChunk { public: explicit NamePointersChunk(std::vector &v) : chunks(v) {} size_t getSize() const override { return chunks.size() * 4; } void writeTo(uint8_t *buf) const override { for (Chunk *c : chunks) { write32le(buf, c->getRVA()); buf += 4; } } private: std::vector chunks; }; class ExportOrdinalChunk : public NonSectionChunk { public: explicit ExportOrdinalChunk(const SymbolTable &symtab, size_t baseOrdinal, size_t tableSize) : baseOrdinal(baseOrdinal), size(tableSize), symtab(symtab) {} size_t getSize() const override { return size * 2; } void writeTo(uint8_t *buf) const override { for (const Export &e : symtab.exports) { if (e.noname) continue; assert(e.ordinal >= baseOrdinal && "Export symbol has invalid ordinal"); // This table stores unbiased indices, so subtract OrdinalBase. write16le(buf, e.ordinal - baseOrdinal); buf += 2; } } private: size_t baseOrdinal; size_t size; const SymbolTable &symtab; }; } // anonymous namespace void IdataContents::create(COFFLinkerContext &ctx) { std::vector> v = binImports(ctx, imports); // In hybrid images, EC and native code are usually very similar, // resulting in a highly similar set of imported symbols. Consequently, // their import tables can be shared, with ARM64X relocations handling any // differences. Identify matching import files used by EC and native code, and // merge them into a single hybrid import entry. if (ctx.hybridSymtab) { for (std::vector &syms : v) { std::vector hybridSyms; ImportFile *prev = nullptr; for (DefinedImportData *sym : syms) { ImportFile *file = sym->file; // At this stage, symbols are sorted by base name, ensuring that // compatible import files, if present, are adjacent. Check if the // current symbol's file imports the same symbol as the previously added // one (if any and if it was not already merged). Additionally, verify // that one of them is native while the other is EC. In rare cases, // separate matching import entries may exist within the same namespace, // which cannot be merged. if (!prev || file->isEC() == prev->isEC() || !file->isSameImport(prev)) { // We can't merge the import file, just add it to hybridSyms // and set prev to its file so that we can try to match the next // symbol. hybridSyms.push_back(sym); prev = file; continue; } // A matching symbol may appear in syms in any order. The native variant // exposes a subset of EC symbols and chunks, so always use the EC // variant as the hybrid import file. If the native file was already // added, replace it with the EC symbol in hybridSyms. Otherwise, the EC // variant is already pushed, so we can simply merge it. if (file->isEC()) { hybridSyms.pop_back(); hybridSyms.push_back(sym); } // Merge import files by storing their hybrid form in the corresponding // file class. prev->hybridFile = file; file->hybridFile = prev; prev = nullptr; // A hybrid import file cannot be merged again. } // Sort symbols by type: native-only files first, followed by merged // hybrid files, and then EC-only files. llvm::stable_sort(hybridSyms, [](DefinedImportData *a, DefinedImportData *b) { if (a->file->hybridFile) return !b->file->hybridFile && b->file->isEC(); return !a->file->isEC() && b->file->isEC(); }); syms = std::move(hybridSyms); } } // Create .idata contents for each DLL. for (std::vector &syms : v) { // Create lookup and address tables. If they have external names, // we need to create hintName chunks to store the names. // If they don't (if they are import-by-ordinals), we store only // ordinal values to the table. size_t base = lookups.size(); Chunk *lookupsTerminator = nullptr, *addressesTerminator = nullptr; for (DefinedImportData *s : syms) { uint16_t ord = s->getOrdinal(); HintNameChunk *hintChunk = nullptr; Chunk *lookupsChunk, *addressesChunk; if (s->getExternalName().empty()) { lookupsChunk = make(ctx, ord); addressesChunk = make(ctx, ord); } else { hintChunk = make(s->getExternalName(), ord); lookupsChunk = make(ctx, hintChunk); addressesChunk = make(ctx, hintChunk); hints.push_back(hintChunk); } // Detect the first EC-only import in the hybrid IAT. Emit null chunk // as a terminator for the native view, and add an ARM64X relocation to // replace it with the correct import for the EC view. // // Additionally, for MSVC compatibility, store the lookup and address // chunks and append them at the end of EC-only imports, where a null // terminator chunk would typically be placed. Since they appear after // the native terminator, they will be ignored in the native view. // In the EC view, they should act as terminators, so emit ZEROFILL // relocations overriding them. if (ctx.hybridSymtab && !lookupsTerminator && s->file->isEC() && !s->file->hybridFile) { lookupsTerminator = lookupsChunk; addressesTerminator = addressesChunk; lookupsChunk = make(ctx); addressesChunk = make(ctx); Arm64XRelocVal relocVal = hintChunk; if (!hintChunk) relocVal = (1ULL << 63) | ord; ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint64_t), lookupsChunk, relocVal); ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_VALUE, sizeof(uint64_t), addressesChunk, relocVal); ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL, sizeof(uint64_t), lookupsTerminator); ctx.dynamicRelocs->add(IMAGE_DVRT_ARM64X_FIXUP_TYPE_ZEROFILL, sizeof(uint64_t), addressesTerminator); } lookups.push_back(lookupsChunk); addresses.push_back(addressesChunk); if (s->file->isEC()) { auto chunk = make(s->file); auxIat.push_back(chunk); s->file->impECSym->setLocation(chunk); chunk = make(s->file); auxIatCopy.push_back(chunk); s->file->auxImpCopySym->setLocation(chunk); } else if (ctx.hybridSymtab) { // Fill the auxiliary IAT with null chunks for native-only imports. auxIat.push_back(make(ctx)); auxIatCopy.push_back(make(ctx)); } } // Terminate with null values. lookups.push_back(lookupsTerminator ? lookupsTerminator : make(ctx)); addresses.push_back(addressesTerminator ? addressesTerminator : make(ctx)); if (ctx.symtabEC) { auxIat.push_back(make(ctx)); auxIatCopy.push_back(make(ctx)); } for (int i = 0, e = syms.size(); i < e; ++i) { syms[i]->setLocation(addresses[base + i]); if (syms[i]->file->hybridFile) syms[i]->file->hybridFile->impSym->setLocation(addresses[base + i]); } // Create the import table header. dllNames.push_back(make(syms[0]->getDLLName())); auto *dir = make(dllNames.back()); dir->lookupTab = lookups[base]; dir->addressTab = addresses[base]; dirs.push_back(dir); if (ctx.hybridSymtab) { // If native-only imports exist, they will appear as a prefix to all // imports. Emit ARM64X relocations to skip them in the EC view. uint32_t nativeOnly = llvm::find_if(syms, [](DefinedImportData *s) { return s->file->isEC(); }) - syms.begin(); if (nativeOnly) { ctx.dynamicRelocs->add( IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0, Arm64XRelocVal( dir, offsetof(ImportDirectoryTableEntry, ImportLookupTableRVA)), nativeOnly * sizeof(uint64_t)); ctx.dynamicRelocs->add( IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0, Arm64XRelocVal(dir, offsetof(ImportDirectoryTableEntry, ImportAddressTableRVA)), nativeOnly * sizeof(uint64_t)); } } } // Add null terminator. dirs.push_back(make(sizeof(ImportDirectoryTableEntry), 4)); } std::vector DelayLoadContents::getChunks() { std::vector v; v.insert(v.end(), dirs.begin(), dirs.end()); v.insert(v.end(), names.begin(), names.end()); v.insert(v.end(), hintNames.begin(), hintNames.end()); v.insert(v.end(), dllNames.begin(), dllNames.end()); return v; } std::vector DelayLoadContents::getDataChunks() { std::vector v; v.insert(v.end(), moduleHandles.begin(), moduleHandles.end()); v.insert(v.end(), addresses.begin(), addresses.end()); return v; } uint64_t DelayLoadContents::getDirSize() { return dirs.size() * sizeof(delay_import_directory_table_entry); } void DelayLoadContents::create() { std::vector> v = binImports(ctx, imports); // Create .didat contents for each DLL. for (std::vector &syms : v) { // Create the delay import table header. dllNames.push_back(make(syms[0]->getDLLName())); auto *dir = make(dllNames.back()); size_t base = addresses.size(); ctx.forEachSymtab([&](SymbolTable &symtab) { if (ctx.hybridSymtab && symtab.isEC()) { // For hybrid images, emit null-terminated native import entries // followed by null-terminated EC entries. If a view is missing imports // for a given module, only terminators are emitted. Emit ARM64X // relocations to skip native entries in the EC view. ctx.dynamicRelocs->add( IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0, Arm64XRelocVal(dir, offsetof(delay_import_directory_table_entry, DelayImportAddressTable)), (addresses.size() - base) * sizeof(uint64_t)); ctx.dynamicRelocs->add( IMAGE_DVRT_ARM64X_FIXUP_TYPE_DELTA, 0, Arm64XRelocVal(dir, offsetof(delay_import_directory_table_entry, DelayImportNameTable)), (addresses.size() - base) * sizeof(uint64_t)); } Chunk *tm = nullptr; for (DefinedImportData *s : syms) { // Process only the symbols belonging to the current symtab. if (symtab.isEC() != s->file->isEC()) continue; if (!tm) { tm = newTailMergeChunk(symtab, dir); Chunk *pdataChunk = newTailMergePDataChunk(symtab, tm); if (pdataChunk) pdata.push_back(pdataChunk); } Chunk *t = newThunkChunk(s, tm); auto *a = make(ctx, t); addresses.push_back(a); s->setLocation(a); thunks.push_back(t); StringRef extName = s->getExternalName(); if (extName.empty()) { names.push_back(make(ctx, s->getOrdinal())); } else { auto *c = make(extName, 0); names.push_back(make(ctx, c)); hintNames.push_back(c); // Add a synthetic symbol for this load thunk, using the // "__imp___load" prefix, in case this thunk needs to be added to the // list of valid call targets for Control Flow Guard. StringRef symName = saver().save("__imp___load_" + extName); s->loadThunkSym = cast(symtab.addSynthetic(symName, t)); } if (symtab.isEC()) { auto chunk = make(s->file); auxIat.push_back(chunk); s->file->impECSym->setLocation(chunk); chunk = make(s->file); auxIatCopy.push_back(chunk); s->file->auxImpCopySym->setLocation(chunk); } else if (ctx.hybridSymtab) { // Fill the auxiliary IAT with null chunks for native imports. auxIat.push_back(make(ctx)); auxIatCopy.push_back(make(ctx)); } } if (tm) { thunks.push_back(tm); StringRef tmName = saver().save("__tailMerge_" + syms[0]->getDLLName().lower()); symtab.addSynthetic(tmName, tm); } // Terminate with null values. addresses.push_back(make(ctx, 8)); names.push_back(make(ctx, 8)); if (ctx.symtabEC) { auxIat.push_back(make(ctx, 8)); auxIatCopy.push_back(make(ctx, 8)); } }); auto *mh = make(8, 8); moduleHandles.push_back(mh); // Fill the delay import table header fields. dir->moduleHandle = mh; dir->addressTab = addresses[base]; dir->nameTab = names[base]; dirs.push_back(dir); } ctx.forEachSymtab([&](SymbolTable &symtab) { if (symtab.tailMergeUnwindInfoChunk) unwindinfo.push_back(symtab.tailMergeUnwindInfoChunk); }); // Add null terminator. dirs.push_back( make(sizeof(delay_import_directory_table_entry), 4)); } Chunk *DelayLoadContents::newTailMergeChunk(SymbolTable &symtab, Chunk *dir) { auto helper = cast(symtab.delayLoadHelper); switch (symtab.machine) { case AMD64: case ARM64EC: return make(dir, helper); case I386: return make(ctx, dir, helper); case ARMNT: return make(ctx, dir, helper); case ARM64: return make(dir, helper); default: llvm_unreachable("unsupported machine type"); } } Chunk *DelayLoadContents::newTailMergePDataChunk(SymbolTable &symtab, Chunk *tm) { switch (symtab.machine) { case AMD64: case ARM64EC: if (!symtab.tailMergeUnwindInfoChunk) symtab.tailMergeUnwindInfoChunk = make(); return make(tm, symtab.tailMergeUnwindInfoChunk); // FIXME: Add support for other architectures. default: return nullptr; // Just don't generate unwind info. } } Chunk *DelayLoadContents::newThunkChunk(DefinedImportData *s, Chunk *tailMerge) { switch (s->file->getMachineType()) { case AMD64: case ARM64EC: return make(s, tailMerge); case I386: return make(ctx, s, tailMerge); case ARMNT: return make(ctx, s, tailMerge); case ARM64: return make(s, tailMerge); default: llvm_unreachable("unsupported machine type"); } } void createEdataChunks(SymbolTable &symtab, std::vector &chunks) { unsigned baseOrdinal = 1 << 16, maxOrdinal = 0; for (Export &e : symtab.exports) { baseOrdinal = std::min(baseOrdinal, (unsigned)e.ordinal); maxOrdinal = std::max(maxOrdinal, (unsigned)e.ordinal); } // Ordinals must start at 1 as suggested in: // https://learn.microsoft.com/en-us/cpp/build/reference/export-exports-a-function?view=msvc-170 assert(baseOrdinal >= 1); auto *dllName = make(sys::path::filename(symtab.ctx.config.outputFile)); auto *addressTab = make(symtab, baseOrdinal, maxOrdinal); std::vector names; for (Export &e : symtab.exports) if (!e.noname) names.push_back(make(e.exportName)); std::vector forwards; for (Export &e : symtab.exports) { if (e.forwardTo.empty()) continue; e.forwardChunk = make(e.forwardTo); forwards.push_back(e.forwardChunk); } auto *nameTab = make(names); auto *ordinalTab = make(symtab, baseOrdinal, names.size()); auto *dir = make(baseOrdinal, maxOrdinal, names.size(), dllName, addressTab, nameTab, ordinalTab); chunks.push_back(dir); chunks.push_back(dllName); chunks.push_back(addressTab); chunks.push_back(nameTab); chunks.push_back(ordinalTab); chunks.insert(chunks.end(), names.begin(), names.end()); chunks.insert(chunks.end(), forwards.begin(), forwards.end()); } } // namespace lld::coff