//===--- Parser.cpp - C Language Family Parser ----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Parse/Declarations.h" #include "clang/Parse/Scope.h" using namespace llvm; using namespace clang; Parser::Parser(Preprocessor &pp, Action &actions) : PP(pp), Actions(actions), Diags(PP.getDiagnostics()) { Tok.SetKind(tok::eof); CurScope = 0; ParenCount = BracketCount = BraceCount = 0; } Parser::~Parser() { // If we still have scopes active, delete the scope tree. delete CurScope; } /// Out-of-line virtual destructor to provide home for Action class. Action::~Action() {} void Parser::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg) { Diags.Report(Loc, DiagID, Msg); } /// MatchRHSPunctuation - For punctuation with a LHS and RHS (e.g. '['/']'), /// this helper function matches and consumes the specified RHS token if /// present. If not present, it emits the specified diagnostic indicating /// that the parser failed to match the RHS of the token at LHSLoc. LHSName /// should be the name of the unmatched LHS token. void Parser::MatchRHSPunctuation(tok::TokenKind RHSTok, SourceLocation LHSLoc) { if (Tok.getKind() == RHSTok) { ConsumeAnyToken(); } else { const char *LHSName = "unknown"; diag::kind DID = diag::err_parse_error; switch (RHSTok) { default: break; case tok::r_paren : LHSName = "("; DID = diag::err_expected_rparen; break; case tok::r_brace : LHSName = "{"; DID = diag::err_expected_rbrace; break; case tok::r_square: LHSName = "["; DID = diag::err_expected_rsquare; break; } Diag(Tok, DID); Diag(LHSLoc, diag::err_matching, LHSName); SkipUntil(RHSTok); } } /// ExpectAndConsume - The parser expects that 'ExpectedTok' is next in the /// input. If so, it is consumed and false is returned. /// /// If the input is malformed, this emits the specified diagnostic. Next, if /// SkipToTok is specified, it calls SkipUntil(SkipToTok). Finally, true is /// returned. bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID, const char *Msg, tok::TokenKind SkipToTok) { if (Tok.getKind() == ExpectedTok) { ConsumeAnyToken(); return false; } Diag(Tok, DiagID, Msg); if (SkipToTok != tok::unknown) SkipUntil(SkipToTok); return true; } //===----------------------------------------------------------------------===// // Error recovery. //===----------------------------------------------------------------------===// /// SkipUntil - Read tokens until we get to the specified token, then consume /// it (unless DontConsume is false). Because we cannot guarantee that the /// token will ever occur, this skips to the next token, or to some likely /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' /// character. /// /// If SkipUntil finds the specified token, it returns true, otherwise it /// returns false. bool Parser::SkipUntil(tok::TokenKind T, bool StopAtSemi, bool DontConsume) { // We always want this function to skip at least one token if the first token // isn't T and if not at EOF. bool isFirstTokenSkipped = true; while (1) { // If we found the token, stop and return true. if (Tok.getKind() == T) { if (DontConsume) { // Noop, don't consume the token. } else { ConsumeAnyToken(); } return true; } switch (Tok.getKind()) { case tok::eof: // Ran out of tokens. return false; case tok::l_paren: // Recursively skip properly-nested parens. ConsumeParen(); SkipUntil(tok::r_paren, false); break; case tok::l_square: // Recursively skip properly-nested square brackets. ConsumeBracket(); SkipUntil(tok::r_square, false); break; case tok::l_brace: // Recursively skip properly-nested braces. ConsumeBrace(); SkipUntil(tok::r_brace, false); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we skip. case tok::r_paren: if (ParenCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeParen(); break; case tok::r_square: if (BracketCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBracket(); break; case tok::r_brace: if (BraceCount && !isFirstTokenSkipped) return false; // Matches something. ConsumeBrace(); break; case tok::string_literal: ConsumeStringToken(); break; case tok::semi: if (StopAtSemi) return false; // FALL THROUGH. default: // Skip this token. ConsumeToken(); break; } isFirstTokenSkipped = false; } } //===----------------------------------------------------------------------===// // Scope manipulation //===----------------------------------------------------------------------===// /// EnterScope - Start a new scope. void Parser::EnterScope() { CurScope = new Scope(CurScope); } /// ExitScope - Pop a scope off the scope stack. void Parser::ExitScope() { assert(CurScope && "Scope imbalance!"); // Inform the actions module that this scope is going away. Actions.PopScope(Tok.getLocation(), CurScope); Scope *Old = CurScope; CurScope = Old->getParent(); delete Old; } //===----------------------------------------------------------------------===// // C99 6.9: External Definitions. //===----------------------------------------------------------------------===// /// ParseTranslationUnit: /// translation-unit: [C99 6.9] /// external-declaration /// translation-unit external-declaration void Parser::ParseTranslationUnit() { // Prime the lexer look-ahead. ConsumeToken(); // Create the global scope, install it as the current scope. assert(CurScope == 0 && "A scope is already active?"); EnterScope(); // Install builtin types. // TODO: Move this someplace more useful. { //__builtin_va_list DeclSpec DS; DS.StorageClassSpec = DeclSpec::SCS_typedef; // TODO: add a 'TST_builtin' type? DS.TypeSpecType = DeclSpec::TST_typedef; Declarator D(DS, Declarator::FileContext); D.SetIdentifier(PP.getIdentifierInfo("__builtin_va_list"),SourceLocation()); Actions.ParseDeclarator(SourceLocation(), CurScope, D, 0); } if (Tok.getKind() == tok::eof) // Empty source file is an extension. Diag(diag::ext_empty_source_file); while (Tok.getKind() != tok::eof) ParseExternalDeclaration(); ExitScope(); assert(CurScope == 0 && "Scope imbalance!"); } /// ParseExternalDeclaration: /// external-declaration: [C99 6.9] /// function-definition [TODO] /// declaration [TODO] /// [EXT] ';' /// [GNU] asm-definition /// [GNU] __extension__ external-declaration [TODO] /// [OBJC] objc-class-definition [TODO] /// [OBJC] objc-class-declaration [TODO] /// [OBJC] objc-alias-declaration [TODO] /// [OBJC] objc-protocol-definition [TODO] /// [OBJC] objc-method-definition [TODO] /// [OBJC] @end [TODO] /// /// [GNU] asm-definition: /// simple-asm-expr ';' /// void Parser::ParseExternalDeclaration() { switch (Tok.getKind()) { case tok::semi: Diag(diag::ext_top_level_semi); ConsumeToken(); break; case tok::kw_asm: ParseSimpleAsm(); ExpectAndConsume(tok::semi, diag::err_expected_semi_after, "top-level asm block"); break; default: // We can't tell whether this is a function-definition or declaration yet. ParseDeclarationOrFunctionDefinition(); break; } } /// ParseDeclarationOrFunctionDefinition - Parse either a function-definition or /// a declaration. We can't tell which we have until we read up to the /// compound-statement in function-definition. /// /// function-definition: [C99 6.9.1] /// declaration-specifiers[opt] declarator declaration-list[opt] /// compound-statement [TODO] /// declaration: [C99 6.7] /// declaration-specifiers init-declarator-list[opt] ';' [TODO] /// [!C99] init-declarator-list ';' [TODO] /// [OMP] threadprivate-directive [TODO] /// void Parser::ParseDeclarationOrFunctionDefinition() { // Parse the common declaration-specifiers piece. DeclSpec DS; ParseDeclarationSpecifiers(DS); // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.getKind() == tok::semi) { // TODO: emit error on 'int;' or 'const enum foo;'. // if (!DS.isMissingDeclaratorOk()) Diag(...); ConsumeToken(); return; } // Parse the first declarator. Declarator DeclaratorInfo(DS, Declarator::FileContext); ParseDeclarator(DeclaratorInfo); // Error parsing the declarator? if (DeclaratorInfo.getIdentifier() == 0) { // If so, skip until the semi-colon or a }. SkipUntil(tok::r_brace, true); if (Tok.getKind() == tok::semi) ConsumeToken(); return; } // If the declarator is the start of a function definition, handle it. if (Tok.getKind() == tok::equal || // int X()= -> not a function def Tok.getKind() == tok::comma || // int X(), -> not a function def Tok.getKind() == tok::semi || // int X(); -> not a function def Tok.getKind() == tok::kw_asm || // int X() __asm__ -> not a fn def Tok.getKind() == tok::kw___attribute) {// int X() __attr__ -> not a fn def // FALL THROUGH. } else if (DeclaratorInfo.isInnermostFunctionType() && (Tok.getKind() == tok::l_brace || // int X() {} isDeclarationSpecifier())) { // int X(f) int f; {} ParseFunctionDefinition(DeclaratorInfo); return; } else { if (DeclaratorInfo.isInnermostFunctionType()) Diag(Tok, diag::err_expected_fn_body); else Diag(Tok, diag::err_expected_after_declarator); SkipUntil(tok::semi); return; } // Parse the init-declarator-list for a normal declaration. ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo); } /// ParseFunctionDefinition - We parsed and verified that the specified /// Declarator is well formed. If this is a K&R-style function, read the /// parameters declaration-list, then start the compound-statement. /// /// declaration-specifiers[opt] declarator declaration-list[opt] /// compound-statement [TODO] /// void Parser::ParseFunctionDefinition(Declarator &D) { const DeclaratorTypeInfo &FnTypeInfo = D.getTypeObject(0); assert(FnTypeInfo.Kind == DeclaratorTypeInfo::Function && "This isn't a function declarator!"); // If this declaration was formed with a K&R-style identifier list for the // arguments, parse declarations for all of the args next. // int foo(a,b) int a; float b; {} if (!FnTypeInfo.Fun.hasPrototype && !FnTypeInfo.Fun.isEmpty) { // Read all the argument declarations. while (isDeclarationSpecifier()) ParseDeclaration(Declarator::KNRTypeListContext); // Note, check that we got them all. } else { //if (isDeclarationSpecifier()) // Diag('k&r declspecs with prototype?'); // TODO: Install the arguments into the current scope. } // We should have an opening brace now. if (Tok.getKind() != tok::l_brace) { Diag(Tok, diag::err_expected_fn_body); // Skip over garbage, until we get to '{'. Don't eat the '{'. SkipUntil(tok::l_brace, true, true); // If we didn't find the '{', bail out. if (Tok.getKind() != tok::l_brace) return; } ParseCompoundStatement(); } /// ParseSimpleAsm /// /// [GNU] simple-asm-expr: /// 'asm' '(' asm-string-literal ')' /// [GNU] asm-string-literal: /// string-literal /// void Parser::ParseSimpleAsm() { assert(Tok.getKind() == tok::kw_asm && "Not an asm!"); ConsumeToken(); if (Tok.getKind() != tok::l_paren) { Diag(Tok, diag::err_expected_lparen_after, "asm"); return; } SourceLocation Loc = Tok.getLocation(); ConsumeParen(); if (Tok.getKind() != tok::string_literal) { Diag(Tok, diag::err_expected_string_literal); SkipUntil(tok::r_paren); return; } ExprResult Res = ParseStringLiteralExpression(); if (Res.isInvalid) { Diag(Tok, diag::err_expected_string_literal); SkipUntil(tok::r_paren); return; } // TODO: Diagnose: wide string literal in 'asm' MatchRHSPunctuation(tok::r_paren, Loc); }