//===-- IRForTarget.cpp -------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Expression/IRForTarget.h" #include "llvm/Support/raw_ostream.h" #include "llvm/InstrTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Target/TargetData.h" #include "llvm/ValueSymbolTable.h" #include "clang/AST/ASTContext.h" #include "lldb/Core/dwarf.h" #include "lldb/Core/Log.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/StreamString.h" #include "lldb/Expression/ClangExpressionDeclMap.h" #include using namespace llvm; static char ID; IRForTarget::IRForTarget(lldb_private::ClangExpressionDeclMap *decl_map, const TargetData *target_data, const char *func_name) : ModulePass(&ID), m_decl_map(decl_map), m_target_data(target_data), m_sel_registerName(NULL), m_func_name(func_name) { } /* A handy utility function used at several places in the code */ static std::string PrintValue(Value *V, bool truncate = false) { std::string s; raw_string_ostream rso(s); V->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); return s; } IRForTarget::~IRForTarget() { } bool IRForTarget::createResultVariable(llvm::Module &M, llvm::Function &F) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); // Find the result variable Value *result_value = M.getNamedValue("___clang_expr_result"); if (!result_value) { if (log) log->PutCString("Couldn't find result variable"); return false; } if (log) log->Printf("Found result in the IR: %s", PrintValue(result_value, false).c_str()); GlobalVariable *result_global = dyn_cast(result_value); if (!result_global) { if (log) log->PutCString("Result variable isn't a GlobalVariable"); return false; } // Find the metadata and follow it to the VarDecl NamedMDNode *named_metadata = M.getNamedMetadata("clang.global.decl.ptrs"); if (!named_metadata) { if (log) log->PutCString("No global metadata"); return false; } unsigned num_nodes = named_metadata->getNumOperands(); unsigned node_index; MDNode *metadata_node = NULL; for (node_index = 0; node_index < num_nodes; ++node_index) { metadata_node = named_metadata->getOperand(node_index); if (metadata_node->getNumOperands() != 2) continue; if (metadata_node->getOperand(0) == result_global) break; } if (!metadata_node) { if (log) log->PutCString("Couldn't find result metadata"); return false; } ConstantInt *constant_int = dyn_cast(metadata_node->getOperand(1)); uint64_t result_decl_intptr = constant_int->getZExtValue(); clang::VarDecl *result_decl = reinterpret_cast(result_decl_intptr); // Get the next available result name from m_decl_map and create the persistent // variable for it lldb_private::TypeFromParser result_decl_type (result_decl->getType().getAsOpaquePtr(), &result_decl->getASTContext()); std::string new_result_name; m_decl_map->GetPersistentResultName(new_result_name); m_decl_map->AddPersistentVariable(result_decl, new_result_name.c_str(), result_decl_type); if (log) log->Printf("Creating a new result global: %s", new_result_name.c_str()); // Construct a new result global and set up its metadata GlobalVariable *new_result_global = new GlobalVariable(M, result_global->getType()->getElementType(), false, /* not constant */ GlobalValue::ExternalLinkage, NULL, /* no initializer */ new_result_name.c_str()); // It's too late in compilation to create a new VarDecl for this, but we don't // need to. We point the metadata at the old VarDecl. This creates an odd // anomaly: a variable with a Value whose name is something like $0 and a // Decl whose name is ___clang_expr_result. This condition is handled in // ClangExpressionDeclMap::DoMaterialize, and the name of the variable is // fixed up. ConstantInt *new_constant_int = ConstantInt::get(constant_int->getType(), result_decl_intptr, false); llvm::Value* values[2]; values[0] = new_result_global; values[1] = new_constant_int; MDNode *persistent_global_md = MDNode::get(M.getContext(), values, 2); named_metadata->addOperand(persistent_global_md); if (log) log->Printf("Replacing %s with %s", PrintValue(result_global).c_str(), PrintValue(new_result_global).c_str()); result_global->replaceAllUsesWith(new_result_global); result_global->eraseFromParent(); return true; } static bool isObjCSelectorRef(Value *V) { GlobalVariable *GV = dyn_cast(V); if (!GV || !GV->hasName() || !GV->getName().startswith("\01L_OBJC_SELECTOR_REFERENCES_")) return false; return true; } bool IRForTarget::RewriteObjCSelector(Instruction* selector_load, Module &M) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); LoadInst *load = dyn_cast(selector_load); if (!load) return false; // Unpack the message name from the selector. In LLVM IR, an objc_msgSend gets represented as // // %tmp = load i8** @"\01L_OBJC_SELECTOR_REFERENCES_" ; // %call = call i8* (i8*, i8*, ...)* @objc_msgSend(i8* %obj, i8* %tmp, ...) ; // // where %obj is the object pointer and %tmp is the selector. // // @"\01L_OBJC_SELECTOR_REFERENCES_" is a pointer to a character array called @"\01L_OBJC_METH_VAR_NAME_". // @"\01L_OBJC_METH_VAR_NAME_" contains the string. // Find the pointer's initializer (a ConstantExpr with opcode GetElementPtr) and get the string from its target GlobalVariable *_objc_selector_references_ = dyn_cast(load->getPointerOperand()); if (!_objc_selector_references_ || !_objc_selector_references_->hasInitializer()) return false; Constant *osr_initializer = _objc_selector_references_->getInitializer(); ConstantExpr *osr_initializer_expr = dyn_cast(osr_initializer); if (!osr_initializer_expr || osr_initializer_expr->getOpcode() != Instruction::GetElementPtr) return false; Value *osr_initializer_base = osr_initializer_expr->getOperand(0); if (!osr_initializer_base) return false; // Find the string's initializer (a ConstantArray) and get the string from it GlobalVariable *_objc_meth_var_name_ = dyn_cast(osr_initializer_base); if (!_objc_meth_var_name_ || !_objc_meth_var_name_->hasInitializer()) return false; Constant *omvn_initializer = _objc_meth_var_name_->getInitializer(); ConstantArray *omvn_initializer_array = dyn_cast(omvn_initializer); if (!omvn_initializer_array->isString()) return false; std::string omvn_initializer_string = omvn_initializer_array->getAsString(); if (log) log->Printf("Found Objective-C selector reference %s", omvn_initializer_string.c_str()); // Construct a call to sel_registerName if (!m_sel_registerName) { uint64_t srN_addr; if (!m_decl_map->GetFunctionAddress("sel_registerName", srN_addr)) return false; // Build the function type: struct objc_selector *sel_registerName(uint8_t*) // The below code would be "more correct," but in actuality what's required is uint8_t* //Type *sel_type = StructType::get(M.getContext()); //Type *sel_ptr_type = PointerType::getUnqual(sel_type); const Type *sel_ptr_type = Type::getInt8PtrTy(M.getContext()); std::vector srN_arg_types; srN_arg_types.push_back(Type::getInt8PtrTy(M.getContext())); llvm::Type *srN_type = FunctionType::get(sel_ptr_type, srN_arg_types, false); // Build the constant containing the pointer to the function const IntegerType *intptr_ty = Type::getIntNTy(M.getContext(), (M.getPointerSize() == Module::Pointer64) ? 64 : 32); PointerType *srN_ptr_ty = PointerType::getUnqual(srN_type); Constant *srN_addr_int = ConstantInt::get(intptr_ty, srN_addr, false); m_sel_registerName = ConstantExpr::getIntToPtr(srN_addr_int, srN_ptr_ty); } SmallVector srN_arguments; Constant *omvn_pointer = ConstantExpr::getBitCast(_objc_meth_var_name_, Type::getInt8PtrTy(M.getContext())); srN_arguments.push_back(omvn_pointer); CallInst *srN_call = CallInst::Create(m_sel_registerName, srN_arguments.begin(), srN_arguments.end(), "srN", selector_load); // Replace the load with the call in all users selector_load->replaceAllUsesWith(srN_call); selector_load->eraseFromParent(); return true; } bool IRForTarget::rewriteObjCSelectors(Module &M, BasicBlock &BB) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); BasicBlock::iterator ii; typedef SmallVector InstrList; typedef InstrList::iterator InstrIterator; InstrList selector_loads; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (LoadInst *load = dyn_cast(&inst)) if (isObjCSelectorRef(load->getPointerOperand())) selector_loads.push_back(&inst); } InstrIterator iter; for (iter = selector_loads.begin(); iter != selector_loads.end(); ++iter) { if (!RewriteObjCSelector(*iter, M)) { if(log) log->PutCString("Couldn't rewrite a reference to an Objective-C selector"); return false; } } return true; } bool IRForTarget::RewritePersistentAlloc(llvm::Instruction *persistent_alloc, llvm::Module &M) { AllocaInst *alloc = dyn_cast(persistent_alloc); MDNode *alloc_md = alloc->getMetadata("clang.decl.ptr"); if (!alloc_md || !alloc_md->getNumOperands()) return false; ConstantInt *constant_int = dyn_cast(alloc_md->getOperand(0)); if (!constant_int) return false; // We attempt to register this as a new persistent variable with the DeclMap. uintptr_t ptr = constant_int->getZExtValue(); clang::VarDecl *decl = reinterpret_cast(ptr); lldb_private::TypeFromParser result_decl_type (decl->getType().getAsOpaquePtr(), &decl->getASTContext()); if (!m_decl_map->AddPersistentVariable(decl, decl->getName().str().c_str(), result_decl_type)) return false; GlobalVariable *persistent_global = new GlobalVariable(M, alloc->getType()->getElementType(), false, /* not constant */ GlobalValue::ExternalLinkage, NULL, /* no initializer */ alloc->getName().str().c_str()); // What we're going to do here is make believe this was a regular old external // variable. That means we need to make the metadata valid. NamedMDNode *named_metadata = M.getNamedMetadata("clang.global.decl.ptrs"); llvm::Value* values[2]; values[0] = persistent_global; values[1] = constant_int; MDNode *persistent_global_md = MDNode::get(M.getContext(), values, 2); named_metadata->addOperand(persistent_global_md); alloc->replaceAllUsesWith(persistent_global); alloc->eraseFromParent(); return true; } bool IRForTarget::rewritePersistentAllocs(llvm::Module &M, llvm::BasicBlock &BB) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); BasicBlock::iterator ii; typedef SmallVector InstrList; typedef InstrList::iterator InstrIterator; InstrList pvar_allocs; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (AllocaInst *alloc = dyn_cast(&inst)) if (alloc->getName().startswith("$")) pvar_allocs.push_back(alloc); } InstrIterator iter; for (iter = pvar_allocs.begin(); iter != pvar_allocs.end(); ++iter) { if (!RewritePersistentAlloc(*iter, M)) { if(log) log->PutCString("Couldn't rewrite the creation of a persistent variable"); return false; } } return true; } static clang::NamedDecl * DeclForGlobalValue(Module &module, GlobalValue *global_value) { NamedMDNode *named_metadata = module.getNamedMetadata("clang.global.decl.ptrs"); if (!named_metadata) return NULL; unsigned num_nodes = named_metadata->getNumOperands(); unsigned node_index; for (node_index = 0; node_index < num_nodes; ++node_index) { MDNode *metadata_node = named_metadata->getOperand(node_index); if (!metadata_node) return NULL; if (metadata_node->getNumOperands() != 2) continue; if (metadata_node->getOperand(0) != global_value) continue; ConstantInt *constant_int = dyn_cast(metadata_node->getOperand(1)); if (!constant_int) return NULL; uintptr_t ptr = constant_int->getZExtValue(); return reinterpret_cast(ptr); } return NULL; } bool IRForTarget::MaybeHandleVariable(Module &M, Value *V, bool Store) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); if (ConstantExpr *constant_expr = dyn_cast(V)) { switch (constant_expr->getOpcode()) { default: break; case Instruction::GetElementPtr: case Instruction::BitCast: Value *s = constant_expr->getOperand(0); MaybeHandleVariable(M, s, Store); } } if (GlobalVariable *global_variable = dyn_cast(V)) { clang::NamedDecl *named_decl = DeclForGlobalValue(M, global_variable); if (!named_decl) { if (isObjCSelectorRef(V)) return true; if (log) log->Printf("Found global variable %s without metadata", global_variable->getName().str().c_str()); return false; } std::string name = named_decl->getName().str(); void *qual_type = NULL; clang::ASTContext *ast_context = NULL; if (clang::ValueDecl *value_decl = dyn_cast(named_decl)) { qual_type = value_decl->getType().getAsOpaquePtr(); ast_context = &value_decl->getASTContext(); } else { return false; } const Type *value_type = global_variable->getType(); size_t value_size = m_target_data->getTypeStoreSize(value_type); off_t value_alignment = m_target_data->getPrefTypeAlignment(value_type); if (named_decl && !m_decl_map->AddValueToStruct(named_decl, V, value_size, value_alignment)) return false; } return true; } bool IRForTarget::MaybeHandleCall(Module &M, CallInst *C) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); Function *fun = C->getCalledFunction(); if (fun == NULL) return true; clang::NamedDecl *fun_decl = DeclForGlobalValue(M, fun); uint64_t fun_addr; Value **fun_value_ptr = NULL; if (fun_decl) { if (!m_decl_map->GetFunctionInfo(fun_decl, fun_value_ptr, fun_addr)) { if (log) log->Printf("Function %s had no address", fun_decl->getNameAsCString()); return false; } } else { if (!m_decl_map->GetFunctionAddress(fun->getName().str().c_str(), fun_addr)) { if (log) log->Printf("Metadataless function %s had no address", fun->getName().str().c_str()); return false; } } if (log) log->Printf("Found %s at %llx", fun->getName().str().c_str(), fun_addr); Value *fun_addr_ptr; if (!fun_value_ptr || !*fun_value_ptr) { std::vector params; const IntegerType *intptr_ty = Type::getIntNTy(M.getContext(), (M.getPointerSize() == Module::Pointer64) ? 64 : 32); FunctionType *fun_ty = FunctionType::get(intptr_ty, params, true); PointerType *fun_ptr_ty = PointerType::getUnqual(fun_ty); Constant *fun_addr_int = ConstantInt::get(intptr_ty, fun_addr, false); fun_addr_ptr = ConstantExpr::getIntToPtr(fun_addr_int, fun_ptr_ty); if (fun_value_ptr) *fun_value_ptr = fun_addr_ptr; } if (fun_value_ptr) fun_addr_ptr = *fun_value_ptr; C->setCalledFunction(fun_addr_ptr); return true; } bool IRForTarget::resolveExternals(Module &M, BasicBlock &BB) { ///////////////////////////////////////////////////////////////////////// // Prepare the current basic block for execution in the remote process // BasicBlock::iterator ii; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (LoadInst *load = dyn_cast(&inst)) if (!MaybeHandleVariable(M, load->getPointerOperand(), false)) return false; if (StoreInst *store = dyn_cast(&inst)) if (!MaybeHandleVariable(M, store->getPointerOperand(), true)) return false; if (CallInst *call = dyn_cast(&inst)) if (!MaybeHandleCall(M, call)) return false; } return true; } static bool isGuardVariableRef(Value *V) { ConstantExpr *C = dyn_cast(V); if (!C || C->getOpcode() != Instruction::BitCast) return false; GlobalVariable *GV = dyn_cast(C->getOperand(0)); if (!GV || !GV->hasName() || !GV->getName().startswith("_ZGV")) return false; return true; } static void TurnGuardLoadIntoZero(Instruction* guard_load, Module &M) { Constant* zero(ConstantInt::get(Type::getInt8Ty(M.getContext()), 0, true)); Value::use_iterator ui; for (ui = guard_load->use_begin(); ui != guard_load->use_end(); ++ui) { if (isa(*ui)) { // do nothing for the moment } else { ui->replaceUsesOfWith(guard_load, zero); } } guard_load->eraseFromParent(); } static void ExciseGuardStore(Instruction* guard_store) { guard_store->eraseFromParent(); } bool IRForTarget::removeGuards(Module &M, BasicBlock &BB) { /////////////////////////////////////////////////////// // Eliminate any reference to guard variables found. // BasicBlock::iterator ii; typedef SmallVector InstrList; typedef InstrList::iterator InstrIterator; InstrList guard_loads; InstrList guard_stores; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (LoadInst *load = dyn_cast(&inst)) if (isGuardVariableRef(load->getPointerOperand())) guard_loads.push_back(&inst); if (StoreInst *store = dyn_cast(&inst)) if (isGuardVariableRef(store->getPointerOperand())) guard_stores.push_back(&inst); } InstrIterator iter; for (iter = guard_loads.begin(); iter != guard_loads.end(); ++iter) TurnGuardLoadIntoZero(*iter, M); for (iter = guard_stores.begin(); iter != guard_stores.end(); ++iter) ExciseGuardStore(*iter); return true; } // UnfoldConstant operates on a constant [C] which has just been replaced with a value // [new_value]. We assume that new_value has been properly placed early in the function, // most likely somewhere in front of the first instruction in the entry basic block // [first_entry_instruction]. // // UnfoldConstant reads through the uses of C and replaces C in those uses with new_value. // Where those uses are constants, the function generates new instructions to compute the // result of the new, non-constant expression and places them before first_entry_instruction. // These instructions replace the constant uses, so UnfoldConstant calls itself recursively // for those. static bool UnfoldConstant(Constant *C, Value *new_value, Instruction *first_entry_instruction) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); Value::use_iterator ui; SmallVector users; // We do this because the use list might change, invalidating our iterator. // Much better to keep a work list ourselves. for (ui = C->use_begin(); ui != C->use_end(); ++ui) users.push_back(*ui); for (int i = 0; i < users.size(); ++i) { User *user = users[i]; if (Constant *constant = dyn_cast(user)) { // synthesize a new non-constant equivalent of the constant if (ConstantExpr *constant_expr = dyn_cast(constant)) { switch (constant_expr->getOpcode()) { default: if (log) log->Printf("Unhandled constant expression type: %s", PrintValue(constant_expr).c_str()); return false; case Instruction::BitCast: { // UnaryExpr // OperandList[0] is value Value *s = constant_expr->getOperand(0); if (s == C) s = new_value; BitCastInst *bit_cast(new BitCastInst(s, C->getType(), "", first_entry_instruction)); UnfoldConstant(constant_expr, bit_cast, first_entry_instruction); } break; case Instruction::GetElementPtr: { // GetElementPtrConstantExpr // OperandList[0] is base // OperandList[1]... are indices Value *ptr = constant_expr->getOperand(0); if (ptr == C) ptr = new_value; SmallVector indices; unsigned operand_index; unsigned num_operands = constant_expr->getNumOperands(); for (operand_index = 1; operand_index < num_operands; ++operand_index) { Value *operand = constant_expr->getOperand(operand_index); if (operand == C) operand = new_value; indices.push_back(operand); } GetElementPtrInst *get_element_ptr(GetElementPtrInst::Create(ptr, indices.begin(), indices.end(), "", first_entry_instruction)); UnfoldConstant(constant_expr, get_element_ptr, first_entry_instruction); } break; } } else { if (log) log->Printf("Unhandled constant type: %s", PrintValue(constant).c_str()); return false; } } else { // simple fall-through case for non-constants user->replaceUsesOfWith(C, new_value); } } return true; } bool IRForTarget::replaceVariables(Module &M, Function &F) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); m_decl_map->DoStructLayout(); if (log) log->Printf("Element arrangement:"); uint32_t num_elements; uint32_t element_index; size_t size; off_t alignment; if (!m_decl_map->GetStructInfo (num_elements, size, alignment)) return false; Function::arg_iterator iter(F.getArgumentList().begin()); if (iter == F.getArgumentList().end()) return false; Argument *argument = iter; if (!argument->getName().equals("___clang_arg")) return false; if (log) log->Printf("Arg: %s", PrintValue(argument).c_str()); BasicBlock &entry_block(F.getEntryBlock()); Instruction *first_entry_instruction(entry_block.getFirstNonPHIOrDbg()); if (!first_entry_instruction) return false; LLVMContext &context(M.getContext()); const IntegerType *offset_type(Type::getInt32Ty(context)); if (!offset_type) return false; for (element_index = 0; element_index < num_elements; ++element_index) { const clang::NamedDecl *decl; Value *value; off_t offset; if (!m_decl_map->GetStructElement (decl, value, offset, element_index)) return false; if (log) log->Printf(" %s (%s) placed at %d", value->getName().str().c_str(), PrintValue(value, true).c_str(), offset); ConstantInt *offset_int(ConstantInt::getSigned(offset_type, offset)); GetElementPtrInst *get_element_ptr = GetElementPtrInst::Create(argument, offset_int, "", first_entry_instruction); BitCastInst *bit_cast = new BitCastInst(get_element_ptr, value->getType(), "", first_entry_instruction); if (Constant *constant = dyn_cast(value)) UnfoldConstant(constant, bit_cast, first_entry_instruction); else value->replaceAllUsesWith(bit_cast); } if (log) log->Printf("Total structure [align %d, size %d]", alignment, size); return true; } bool IRForTarget::runOnModule(Module &M) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); Function* function = M.getFunction(StringRef(m_func_name.c_str())); if (!function) { if (log) log->Printf("Couldn't find %s() in the module", m_func_name.c_str()); return false; } Function::iterator bbi; //////////////////////////////////////////////////////////// // Replace __clang_expr_result with a persistent variable // if (!createResultVariable(M, *function)) return false; ////////////////////////////////// // Run basic-block level passes // for (bbi = function->begin(); bbi != function->end(); ++bbi) { if (!removeGuards(M, *bbi)) return false; if (!rewritePersistentAllocs(M, *bbi)) return false; if (!rewriteObjCSelectors(M, *bbi)) return false; if (!resolveExternals(M, *bbi)) return false; } if (log) { std::string s; raw_string_ostream oss(s); M.print(oss, NULL); oss.flush(); log->Printf("Module after preparing for execution: \n%s", s.c_str()); } /////////////////////////////// // Run function-level passes // if (!replaceVariables(M, *function)) return false; return true; } void IRForTarget::assignPassManager(PMStack &PMS, PassManagerType T) { } PassManagerType IRForTarget::getPotentialPassManagerType() const { return PMT_ModulePassManager; }