//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for expressions. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Designator.h" #include "clang/Parse/Scope.h" using namespace clang; //===----------------------------------------------------------------------===// // Standard Promotions and Conversions //===----------------------------------------------------------------------===// /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). void Sema::DefaultFunctionArrayConversion(Expr *&E) { QualType Ty = E->getType(); assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); if (Ty->isFunctionType()) ImpCastExprToType(E, Context.getPointerType(Ty)); else if (Ty->isArrayType()) { // In C90 mode, arrays only promote to pointers if the array expression is // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has // type 'array of type' is converted to an expression that has type 'pointer // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression // that has type 'array of type' ...". The relevant change is "an lvalue" // (C90) to "an expression" (C99). // // C++ 4.2p1: // An lvalue or rvalue of type "array of N T" or "array of unknown bound of // T" can be converted to an rvalue of type "pointer to T". // if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLvalue(Context) == Expr::LV_Valid) ImpCastExprToType(E, Context.getArrayDecayedType(Ty)); } } /// UsualUnaryConversions - Performs various conversions that are common to most /// operators (C99 6.3). The conversions of array and function types are /// sometimes surpressed. For example, the array->pointer conversion doesn't /// apply if the array is an argument to the sizeof or address (&) operators. /// In these instances, this routine should *not* be called. Expr *Sema::UsualUnaryConversions(Expr *&Expr) { QualType Ty = Expr->getType(); assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2 ImpCastExprToType(Expr, Context.IntTy); else DefaultFunctionArrayConversion(Expr); return Expr; } /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that /// do not have a prototype. Arguments that have type float are promoted to /// double. All other argument types are converted by UsualUnaryConversions(). void Sema::DefaultArgumentPromotion(Expr *&Expr) { QualType Ty = Expr->getType(); assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); // If this is a 'float' (CVR qualified or typedef) promote to double. if (const BuiltinType *BT = Ty->getAsBuiltinType()) if (BT->getKind() == BuiltinType::Float) return ImpCastExprToType(Expr, Context.DoubleTy); UsualUnaryConversions(Expr); } /// UsualArithmeticConversions - Performs various conversions that are common to /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this /// routine returns the first non-arithmetic type found. The client is /// responsible for emitting appropriate error diagnostics. /// FIXME: verify the conversion rules for "complex int" are consistent with /// GCC. QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, bool isCompAssign) { if (!isCompAssign) { UsualUnaryConversions(lhsExpr); UsualUnaryConversions(rhsExpr); } // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType lhs = Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType(); QualType rhs = Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType(); // If both types are identical, no conversion is needed. if (lhs == rhs) return lhs; // If either side is a non-arithmetic type (e.g. a pointer), we are done. // The caller can deal with this (e.g. pointer + int). if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) return lhs; QualType destType = UsualArithmeticConversionsType(lhs, rhs); if (!isCompAssign) { ImpCastExprToType(lhsExpr, destType); ImpCastExprToType(rhsExpr, destType); } return destType; } QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) { // Perform the usual unary conversions. We do this early so that // integral promotions to "int" can allow us to exit early, in the // lhs == rhs check. Also, for conversion purposes, we ignore any // qualifiers. For example, "const float" and "float" are // equivalent. if (lhs->isPromotableIntegerType()) lhs = Context.IntTy; else lhs = lhs.getUnqualifiedType(); if (rhs->isPromotableIntegerType()) rhs = Context.IntTy; else rhs = rhs.getUnqualifiedType(); // If both types are identical, no conversion is needed. if (lhs == rhs) return lhs; // If either side is a non-arithmetic type (e.g. a pointer), we are done. // The caller can deal with this (e.g. pointer + int). if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) return lhs; // At this point, we have two different arithmetic types. // Handle complex types first (C99 6.3.1.8p1). if (lhs->isComplexType() || rhs->isComplexType()) { // if we have an integer operand, the result is the complex type. if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { // convert the rhs to the lhs complex type. return lhs; } if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { // convert the lhs to the rhs complex type. return rhs; } // This handles complex/complex, complex/float, or float/complex. // When both operands are complex, the shorter operand is converted to the // type of the longer, and that is the type of the result. This corresponds // to what is done when combining two real floating-point operands. // The fun begins when size promotion occur across type domains. // From H&S 6.3.4: When one operand is complex and the other is a real // floating-point type, the less precise type is converted, within it's // real or complex domain, to the precision of the other type. For example, // when combining a "long double" with a "double _Complex", the // "double _Complex" is promoted to "long double _Complex". int result = Context.getFloatingTypeOrder(lhs, rhs); if (result > 0) { // The left side is bigger, convert rhs. rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs); } else if (result < 0) { // The right side is bigger, convert lhs. lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs); } // At this point, lhs and rhs have the same rank/size. Now, make sure the // domains match. This is a requirement for our implementation, C99 // does not require this promotion. if (lhs != rhs) { // Domains don't match, we have complex/float mix. if (lhs->isRealFloatingType()) { // handle "double, _Complex double". return rhs; } else { // handle "_Complex double, double". return lhs; } } return lhs; // The domain/size match exactly. } // Now handle "real" floating types (i.e. float, double, long double). if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) { // if we have an integer operand, the result is the real floating type. if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { // convert rhs to the lhs floating point type. return lhs; } if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { // convert lhs to the rhs floating point type. return rhs; } // We have two real floating types, float/complex combos were handled above. // Convert the smaller operand to the bigger result. int result = Context.getFloatingTypeOrder(lhs, rhs); if (result > 0) { // convert the rhs return lhs; } if (result < 0) { // convert the lhs return rhs; } assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison"); } if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) { // Handle GCC complex int extension. const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); if (lhsComplexInt && rhsComplexInt) { if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), rhsComplexInt->getElementType()) >= 0) { // convert the rhs return lhs; } return rhs; } else if (lhsComplexInt && rhs->isIntegerType()) { // convert the rhs to the lhs complex type. return lhs; } else if (rhsComplexInt && lhs->isIntegerType()) { // convert the lhs to the rhs complex type. return rhs; } } // Finally, we have two differing integer types. // The rules for this case are in C99 6.3.1.8 int compare = Context.getIntegerTypeOrder(lhs, rhs); bool lhsSigned = lhs->isSignedIntegerType(), rhsSigned = rhs->isSignedIntegerType(); QualType destType; if (lhsSigned == rhsSigned) { // Same signedness; use the higher-ranked type destType = compare >= 0 ? lhs : rhs; } else if (compare != (lhsSigned ? 1 : -1)) { // The unsigned type has greater than or equal rank to the // signed type, so use the unsigned type destType = lhsSigned ? rhs : lhs; } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) { // The two types are different widths; if we are here, that // means the signed type is larger than the unsigned type, so // use the signed type. destType = lhsSigned ? lhs : rhs; } else { // The signed type is higher-ranked than the unsigned type, // but isn't actually any bigger (like unsigned int and long // on most 32-bit systems). Use the unsigned type corresponding // to the signed type. destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs); } return destType; } //===----------------------------------------------------------------------===// // Semantic Analysis for various Expression Types //===----------------------------------------------------------------------===// /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from /// multiple tokens. However, the common case is that StringToks points to one /// string. /// Action::ExprResult Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { assert(NumStringToks && "Must have at least one string!"); StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target); if (Literal.hadError) return ExprResult(true); llvm::SmallVector StringTokLocs; for (unsigned i = 0; i != NumStringToks; ++i) StringTokLocs.push_back(StringToks[i].getLocation()); // Verify that pascal strings aren't too large. if (Literal.Pascal && Literal.GetStringLength() > 256) return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long) << SourceRange(StringToks[0].getLocation(), StringToks[NumStringToks-1].getLocation()); QualType StrTy = Context.CharTy; if (Literal.AnyWide) StrTy = Context.getWCharType(); if (Literal.Pascal) StrTy = Context.UnsignedCharTy; // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). if (getLangOptions().CPlusPlus) StrTy.addConst(); // Get an array type for the string, according to C99 6.4.5. This includes // the nul terminator character as well as the string length for pascal // strings. StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Literal.GetStringLength()+1), ArrayType::Normal, 0); // Pass &StringTokLocs[0], StringTokLocs.size() to factory! return new StringLiteral(Literal.GetString(), Literal.GetStringLength(), Literal.AnyWide, StrTy, StringToks[0].getLocation(), StringToks[NumStringToks-1].getLocation()); } /// ShouldSnapshotBlockValueReference - Return true if a reference inside of /// CurBlock to VD should cause it to be snapshotted (as we do for auto /// variables defined outside the block) or false if this is not needed (e.g. /// for values inside the block or for globals). /// /// FIXME: This will create BlockDeclRefExprs for global variables, /// function references, etc which is suboptimal :) and breaks /// things like "integer constant expression" tests. static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock, ValueDecl *VD) { // If the value is defined inside the block, we couldn't snapshot it even if // we wanted to. if (CurBlock->TheDecl == VD->getDeclContext()) return false; // If this is an enum constant or function, it is constant, don't snapshot. if (isa(VD) || isa(VD)) return false; // If this is a reference to an extern, static, or global variable, no need to // snapshot it. // FIXME: What about 'const' variables in C++? if (const VarDecl *Var = dyn_cast(VD)) return Var->hasLocalStorage(); return true; } /// ActOnIdentifierExpr - The parser read an identifier in expression context, /// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this /// identifier is used in a function call context. /// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the /// class or namespace that the identifier must be a member of. Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc, IdentifierInfo &II, bool HasTrailingLParen, const CXXScopeSpec *SS) { return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS); } /// ActOnDeclarationNameExpr - The parser has read some kind of name /// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine /// performs lookup on that name and returns an expression that refers /// to that name. This routine isn't directly called from the parser, /// because the parser doesn't know about DeclarationName. Rather, /// this routine is called by ActOnIdentifierExpr, /// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr, /// which form the DeclarationName from the corresponding syntactic /// forms. /// /// HasTrailingLParen indicates whether this identifier is used in a /// function call context. LookupCtx is only used for a C++ /// qualified-id (foo::bar) to indicate the class or namespace that /// the identifier must be a member of. Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc, DeclarationName Name, bool HasTrailingLParen, const CXXScopeSpec *SS) { // Could be enum-constant, value decl, instance variable, etc. Decl *D; if (SS && !SS->isEmpty()) { DeclContext *DC = static_cast(SS->getScopeRep()); if (DC == 0) return true; D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC); } else D = LookupDecl(Name, Decl::IDNS_Ordinary, S); // If this reference is in an Objective-C method, then ivar lookup happens as // well. IdentifierInfo *II = Name.getAsIdentifierInfo(); if (II && getCurMethodDecl()) { ScopedDecl *SD = dyn_cast_or_null(D); // There are two cases to handle here. 1) scoped lookup could have failed, // in which case we should look for an ivar. 2) scoped lookup could have // found a decl, but that decl is outside the current method (i.e. a global // variable). In these two cases, we do a lookup for an ivar with this // name, if the lookup suceeds, we replace it our current decl. if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) { ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface(); if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) { // FIXME: This should use a new expr for a direct reference, don't turn // this into Self->ivar, just return a BareIVarExpr or something. IdentifierInfo &II = Context.Idents.get("self"); ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false); return new ObjCIvarRefExpr(IV, IV->getType(), Loc, static_cast(SelfExpr.Val), true, true); } } // Needed to implement property "super.method" notation. if (SD == 0 && II->isStr("super")) { QualType T = Context.getPointerType(Context.getObjCInterfaceType( getCurMethodDecl()->getClassInterface())); return new ObjCSuperExpr(Loc, T); } } if (D == 0) { // Otherwise, this could be an implicitly declared function reference (legal // in C90, extension in C99). if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) // Not in C++. D = ImplicitlyDefineFunction(Loc, *II, S); else { // If this name wasn't predeclared and if this is not a function call, // diagnose the problem. if (SS && !SS->isEmpty()) return Diag(Loc, diag::err_typecheck_no_member) << Name << SS->getRange(); else if (Name.getNameKind() == DeclarationName::CXXOperatorName || Name.getNameKind() == DeclarationName::CXXConversionFunctionName) return Diag(Loc, diag::err_undeclared_use) << Name.getAsString(); else return Diag(Loc, diag::err_undeclared_var_use) << Name; } } if (CXXFieldDecl *FD = dyn_cast(D)) { if (CXXMethodDecl *MD = dyn_cast(CurContext)) { if (MD->isStatic()) // "invalid use of member 'x' in static member function" return Diag(Loc, diag::err_invalid_member_use_in_static_method) << FD->getDeclName(); if (cast(MD->getParent()) != FD->getParent()) // "invalid use of nonstatic data member 'x'" return Diag(Loc, diag::err_invalid_non_static_member_use) << FD->getDeclName(); if (FD->isInvalidDecl()) return true; // FIXME: Handle 'mutable'. return new DeclRefExpr(FD, FD->getType().getWithAdditionalQualifiers(MD->getTypeQualifiers()),Loc); } return Diag(Loc, diag::err_invalid_non_static_member_use) << FD->getDeclName(); } if (isa(D)) return Diag(Loc, diag::err_unexpected_typedef) << Name; if (isa(D)) return Diag(Loc, diag::err_unexpected_interface) << Name; if (isa(D)) return Diag(Loc, diag::err_unexpected_namespace) << Name; // Make the DeclRefExpr or BlockDeclRefExpr for the decl. if (OverloadedFunctionDecl *Ovl = dyn_cast(D)) return new DeclRefExpr(Ovl, Context.OverloadTy, Loc); ValueDecl *VD = cast(D); // check if referencing an identifier with __attribute__((deprecated)). if (VD->getAttr()) Diag(Loc, diag::warn_deprecated) << VD->getDeclName(); // Only create DeclRefExpr's for valid Decl's. if (VD->isInvalidDecl()) return true; // If the identifier reference is inside a block, and it refers to a value // that is outside the block, create a BlockDeclRefExpr instead of a // DeclRefExpr. This ensures the value is treated as a copy-in snapshot when // the block is formed. // // We do not do this for things like enum constants, global variables, etc, // as they do not get snapshotted. // if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) { // The BlocksAttr indicates the variable is bound by-reference. if (VD->getAttr()) return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, true); // Variable will be bound by-copy, make it const within the closure. VD->getType().addConst(); return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc, false); } // If this reference is not in a block or if the referenced variable is // within the block, create a normal DeclRefExpr. return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc); } Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { PredefinedExpr::IdentType IT; switch (Kind) { default: assert(0 && "Unknown simple primary expr!"); case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; } // Verify that this is in a function context. if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0) return Diag(Loc, diag::err_predef_outside_function); // Pre-defined identifiers are of type char[x], where x is the length of the // string. unsigned Length; if (getCurFunctionDecl()) Length = getCurFunctionDecl()->getIdentifier()->getLength(); else Length = getCurMethodDecl()->getSynthesizedMethodSize(); llvm::APInt LengthI(32, Length + 1); QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const); ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); return new PredefinedExpr(Loc, ResTy, IT); } Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { llvm::SmallString<16> CharBuffer; CharBuffer.resize(Tok.getLength()); const char *ThisTokBegin = &CharBuffer[0]; unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, Tok.getLocation(), PP); if (Literal.hadError()) return ExprResult(true); QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy; return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type, Tok.getLocation()); } Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) { // fast path for a single digit (which is quite common). A single digit // cannot have a trigraph, escaped newline, radix prefix, or type suffix. if (Tok.getLength() == 1) { const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation()); unsigned IntSize =static_cast(Context.getTypeSize(Context.IntTy)); return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'), Context.IntTy, Tok.getLocation())); } llvm::SmallString<512> IntegerBuffer; // Add padding so that NumericLiteralParser can overread by one character. IntegerBuffer.resize(Tok.getLength()+1); const char *ThisTokBegin = &IntegerBuffer[0]; // Get the spelling of the token, which eliminates trigraphs, etc. unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, Tok.getLocation(), PP); if (Literal.hadError) return ExprResult(true); Expr *Res; if (Literal.isFloatingLiteral()) { QualType Ty; if (Literal.isFloat) Ty = Context.FloatTy; else if (!Literal.isLong) Ty = Context.DoubleTy; else Ty = Context.LongDoubleTy; const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); // isExact will be set by GetFloatValue(). bool isExact = false; Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact, Ty, Tok.getLocation()); } else if (!Literal.isIntegerLiteral()) { return ExprResult(true); } else { QualType Ty; // long long is a C99 feature. if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && Literal.isLongLong) Diag(Tok.getLocation(), diag::ext_longlong); // Get the value in the widest-possible width. llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); if (Literal.GetIntegerValue(ResultVal)) { // If this value didn't fit into uintmax_t, warn and force to ull. Diag(Tok.getLocation(), diag::warn_integer_too_large); Ty = Context.UnsignedLongLongTy; assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && "long long is not intmax_t?"); } else { // If this value fits into a ULL, try to figure out what else it fits into // according to the rules of C99 6.4.4.1p5. // Octal, Hexadecimal, and integers with a U suffix are allowed to // be an unsigned int. bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; // Check from smallest to largest, picking the smallest type we can. unsigned Width = 0; if (!Literal.isLong && !Literal.isLongLong) { // Are int/unsigned possibilities? unsigned IntSize = Context.Target.getIntWidth(); // Does it fit in a unsigned int? if (ResultVal.isIntN(IntSize)) { // Does it fit in a signed int? if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) Ty = Context.IntTy; else if (AllowUnsigned) Ty = Context.UnsignedIntTy; Width = IntSize; } } // Are long/unsigned long possibilities? if (Ty.isNull() && !Literal.isLongLong) { unsigned LongSize = Context.Target.getLongWidth(); // Does it fit in a unsigned long? if (ResultVal.isIntN(LongSize)) { // Does it fit in a signed long? if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) Ty = Context.LongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongTy; Width = LongSize; } } // Finally, check long long if needed. if (Ty.isNull()) { unsigned LongLongSize = Context.Target.getLongLongWidth(); // Does it fit in a unsigned long long? if (ResultVal.isIntN(LongLongSize)) { // Does it fit in a signed long long? if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) Ty = Context.LongLongTy; else if (AllowUnsigned) Ty = Context.UnsignedLongLongTy; Width = LongLongSize; } } // If we still couldn't decide a type, we probably have something that // does not fit in a signed long long, but has no U suffix. if (Ty.isNull()) { Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); Ty = Context.UnsignedLongLongTy; Width = Context.Target.getLongLongWidth(); } if (ResultVal.getBitWidth() != Width) ResultVal.trunc(Width); } Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation()); } // If this is an imaginary literal, create the ImaginaryLiteral wrapper. if (Literal.isImaginary) Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); return Res; } Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, ExprTy *Val) { Expr *E = (Expr *)Val; assert((E != 0) && "ActOnParenExpr() missing expr"); return new ParenExpr(L, R, E); } /// The UsualUnaryConversions() function is *not* called by this routine. /// See C99 6.3.2.1p[2-4] for more details. bool Sema::CheckSizeOfAlignOfOperand(QualType exprType, SourceLocation OpLoc, const SourceRange &ExprRange, bool isSizeof) { // C99 6.5.3.4p1: if (isa(exprType) && isSizeof) // alignof(function) is allowed. Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange; else if (exprType->isVoidType()) Diag(OpLoc, diag::ext_sizeof_void_type) << (isSizeof ? "sizeof" : "__alignof") << ExprRange; else if (exprType->isIncompleteType()) return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type : diag::err_alignof_incomplete_type) << exprType << ExprRange; return false; } /// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and /// the same for @c alignof and @c __alignof /// Note that the ArgRange is invalid if isType is false. Action::ExprResult Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType, void *TyOrEx, const SourceRange &ArgRange) { // If error parsing type, ignore. if (TyOrEx == 0) return true; QualType ArgTy; SourceRange Range; if (isType) { ArgTy = QualType::getFromOpaquePtr(TyOrEx); Range = ArgRange; } else { // Get the end location. Expr *ArgEx = (Expr *)TyOrEx; Range = ArgEx->getSourceRange(); ArgTy = ArgEx->getType(); } // Verify that the operand is valid. if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof)) return true; // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(), OpLoc, Range.getEnd()); } QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) { DefaultFunctionArrayConversion(V); // These operators return the element type of a complex type. if (const ComplexType *CT = V->getType()->getAsComplexType()) return CT->getElementType(); // Otherwise they pass through real integer and floating point types here. if (V->getType()->isArithmeticType()) return V->getType(); // Reject anything else. Diag(Loc, diag::err_realimag_invalid_type) << V->getType(); return QualType(); } Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, ExprTy *Input) { Expr *Arg = (Expr *)Input; UnaryOperator::Opcode Opc; switch (Kind) { default: assert(0 && "Unknown unary op!"); case tok::plusplus: Opc = UnaryOperator::PostInc; break; case tok::minusminus: Opc = UnaryOperator::PostDec; break; } if (getLangOptions().CPlusPlus && (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) { // Which overloaded operator? OverloadedOperatorKind OverOp = (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus; // C++ [over.inc]p1: // // [...] If the function is a member function with one // parameter (which shall be of type int) or a non-member // function with two parameters (the second of which shall be // of type int), it defines the postfix increment operator ++ // for objects of that type. When the postfix increment is // called as a result of using the ++ operator, the int // argument will have value zero. Expr *Args[2] = { Arg, new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0, /*isSigned=*/true), Context.IntTy, SourceLocation()) }; // Build the candidate set for overloading OverloadCandidateSet CandidateSet; AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(Arg, Method)) return true; } else { // Convert the arguments. if (PerformCopyInitialization(Arg, FnDecl->getParamDecl(0)->getType(), "passing")) return true; } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0], "passing")) return true; break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << UnaryOperator::getOpcodeStr(Opc) << Arg->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return true; } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. } QualType result = CheckIncrementDecrementOperand(Arg, OpLoc); if (result.isNull()) return true; return new UnaryOperator(Arg, Opc, result, OpLoc); } Action::ExprResult Sema:: ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc, ExprTy *Idx, SourceLocation RLoc) { Expr *LHSExp = static_cast(Base), *RHSExp = static_cast(Idx); if (getLangOptions().CPlusPlus && LHSExp->getType()->isRecordType() || LHSExp->getType()->isEnumeralType() || RHSExp->getType()->isRecordType() || RHSExp->getType()->isRecordType()) { // Add the appropriate overloaded operators (C++ [over.match.oper]) // to the candidate set. OverloadCandidateSet CandidateSet; Expr *Args[2] = { LHSExp, RHSExp }; AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(LHSExp, Method) || PerformCopyInitialization(RHSExp, FnDecl->getParamDecl(0)->getType(), "passing")) return true; } else { // Convert the arguments. if (PerformCopyInitialization(LHSExp, FnDecl->getParamDecl(0)->getType(), "passing") || PerformCopyInitialization(RHSExp, FnDecl->getParamDecl(1)->getType(), "passing")) return true; } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0], "passing") || PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1], "passing")) return true; break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(LLoc, diag::err_ovl_ambiguous_oper) << "[]" << LHSExp->getSourceRange() << RHSExp->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return true; } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. } // Perform default conversions. DefaultFunctionArrayConversion(LHSExp); DefaultFunctionArrayConversion(RHSExp); QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent // to the expression *((e1)+(e2)). This means the array "Base" may actually be // in the subscript position. As a result, we need to derive the array base // and index from the expression types. Expr *BaseExpr, *IndexExpr; QualType ResultType; if (const PointerType *PTy = LHSTy->getAsPointerType()) { BaseExpr = LHSExp; IndexExpr = RHSExp; // FIXME: need to deal with const... ResultType = PTy->getPointeeType(); } else if (const PointerType *PTy = RHSTy->getAsPointerType()) { // Handle the uncommon case of "123[Ptr]". BaseExpr = RHSExp; IndexExpr = LHSExp; // FIXME: need to deal with const... ResultType = PTy->getPointeeType(); } else if (const VectorType *VTy = LHSTy->getAsVectorType()) { BaseExpr = LHSExp; // vectors: V[123] IndexExpr = RHSExp; // Component access limited to variables (reject vec4.rg[1]). if (!isa(BaseExpr) && !isa(BaseExpr) && !isa(BaseExpr)) return Diag(LLoc, diag::err_ext_vector_component_access) << SourceRange(LLoc, RLoc); // FIXME: need to deal with const... ResultType = VTy->getElementType(); } else { return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value) << RHSExp->getSourceRange(); } // C99 6.5.2.1p1 if (!IndexExpr->getType()->isIntegerType()) return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript) << IndexExpr->getSourceRange(); // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice, // the following check catches trying to index a pointer to a function (e.g. // void (*)(int)) and pointers to incomplete types. Functions are not // objects in C99. if (!ResultType->isObjectType()) return Diag(BaseExpr->getLocStart(), diag::err_typecheck_subscript_not_object) << BaseExpr->getType() << BaseExpr->getSourceRange(); return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc); } QualType Sema:: CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, IdentifierInfo &CompName, SourceLocation CompLoc) { const ExtVectorType *vecType = baseType->getAsExtVectorType(); // This flag determines whether or not the component is to be treated as a // special name, or a regular GLSL-style component access. bool SpecialComponent = false; // The vector accessor can't exceed the number of elements. const char *compStr = CompName.getName(); if (strlen(compStr) > vecType->getNumElements()) { Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) << baseType << SourceRange(CompLoc); return QualType(); } // Check that we've found one of the special components, or that the component // names must come from the same set. if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || !strcmp(compStr, "e") || !strcmp(compStr, "o")) { SpecialComponent = true; } else if (vecType->getPointAccessorIdx(*compStr) != -1) { do compStr++; while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); } else if (vecType->getColorAccessorIdx(*compStr) != -1) { do compStr++; while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1); } else if (vecType->getTextureAccessorIdx(*compStr) != -1) { do compStr++; while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1); } if (!SpecialComponent && *compStr) { // We didn't get to the end of the string. This means the component names // didn't come from the same set *or* we encountered an illegal name. Diag(OpLoc, diag::err_ext_vector_component_name_illegal) << std::string(compStr,compStr+1) << SourceRange(CompLoc); return QualType(); } // Each component accessor can't exceed the vector type. compStr = CompName.getName(); while (*compStr) { if (vecType->isAccessorWithinNumElements(*compStr)) compStr++; else break; } if (!SpecialComponent && *compStr) { // We didn't get to the end of the string. This means a component accessor // exceeds the number of elements in the vector. Diag(OpLoc, diag::err_ext_vector_component_exceeds_length) << baseType << SourceRange(CompLoc); return QualType(); } // If we have a special component name, verify that the current vector length // is an even number, since all special component names return exactly half // the elements. if (SpecialComponent && (vecType->getNumElements() & 1U)) { Diag(OpLoc, diag::err_ext_vector_component_requires_even) << baseType << SourceRange(CompLoc); return QualType(); } // The component accessor looks fine - now we need to compute the actual type. // The vector type is implied by the component accessor. For example, // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2 : CompName.getLength(); if (CompSize == 1) return vecType->getElementType(); QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize); // Now look up the TypeDefDecl from the vector type. Without this, // diagostics look bad. We want extended vector types to appear built-in. for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) { if (ExtVectorDecls[i]->getUnderlyingType() == VT) return Context.getTypedefType(ExtVectorDecls[i]); } return VT; // should never get here (a typedef type should always be found). } /// constructSetterName - Return the setter name for the given /// identifier, i.e. "set" + Name where the initial character of Name /// has been capitalized. // FIXME: Merge with same routine in Parser. But where should this // live? static IdentifierInfo *constructSetterName(IdentifierTable &Idents, const IdentifierInfo *Name) { llvm::SmallString<100> SelectorName; SelectorName = "set"; SelectorName.append(Name->getName(), Name->getName()+Name->getLength()); SelectorName[3] = toupper(SelectorName[3]); return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]); } Action::ExprResult Sema:: ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation MemberLoc, IdentifierInfo &Member) { Expr *BaseExpr = static_cast(Base); assert(BaseExpr && "no record expression"); // Perform default conversions. DefaultFunctionArrayConversion(BaseExpr); QualType BaseType = BaseExpr->getType(); assert(!BaseType.isNull() && "no type for member expression"); // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr // must have pointer type, and the accessed type is the pointee. if (OpKind == tok::arrow) { if (const PointerType *PT = BaseType->getAsPointerType()) BaseType = PT->getPointeeType(); else if (getLangOptions().CPlusPlus && BaseType->isRecordType()) return BuildOverloadedArrowExpr(BaseExpr, OpLoc, MemberLoc, Member); else return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow) << BaseType << BaseExpr->getSourceRange(); } // Handle field access to simple records. This also handles access to fields // of the ObjC 'id' struct. if (const RecordType *RTy = BaseType->getAsRecordType()) { RecordDecl *RDecl = RTy->getDecl(); if (RTy->isIncompleteType()) return Diag(OpLoc, diag::err_typecheck_incomplete_tag) << RDecl->getDeclName() << BaseExpr->getSourceRange(); // The record definition is complete, now make sure the member is valid. FieldDecl *MemberDecl = RDecl->getMember(&Member); if (!MemberDecl) return Diag(MemberLoc, diag::err_typecheck_no_member) << &Member << BaseExpr->getSourceRange(); // Figure out the type of the member; see C99 6.5.2.3p3 // FIXME: Handle address space modifiers QualType MemberType = MemberDecl->getType(); unsigned combinedQualifiers = MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers(); if (CXXFieldDecl *CXXMember = dyn_cast(MemberDecl)) { if (CXXMember->isMutable()) combinedQualifiers &= ~QualType::Const; } MemberType = MemberType.getQualifiedType(combinedQualifiers); return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl, MemberLoc, MemberType); } // Handle access to Objective-C instance variables, such as "Obj->ivar" and // (*Obj).ivar. if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) { if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr, OpKind == tok::arrow); return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar) << IFTy->getDecl()->getDeclName() << &Member << BaseExpr->getSourceRange(); } // Handle Objective-C property access, which is "Obj.property" where Obj is a // pointer to a (potentially qualified) interface type. const PointerType *PTy; const ObjCInterfaceType *IFTy; if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) && (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) { ObjCInterfaceDecl *IFace = IFTy->getDecl(); // Search for a declared property first. if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr); // Check protocols on qualified interfaces. for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(), E = IFTy->qual_end(); I != E; ++I) if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr); // If that failed, look for an "implicit" property by seeing if the nullary // selector is implemented. // FIXME: The logic for looking up nullary and unary selectors should be // shared with the code in ActOnInstanceMessage. Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); // If this reference is in an @implementation, check for 'private' methods. if (!Getter) if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = ObjCImplementations[ClassDecl->getIdentifier()]) Getter = ImpDecl->getInstanceMethod(Sel); // Look through local category implementations associated with the class. if (!Getter) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == IFace) Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel); } } if (Getter) { // If we found a getter then this may be a valid dot-reference, we // will look for the matching setter, in case it is needed. IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(), &Member); Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName); ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); if (!Setter) { // If this reference is in an @implementation, also check for 'private' // methods. if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) if (ObjCImplementationDecl *ImpDecl = ObjCImplementations[ClassDecl->getIdentifier()]) Setter = ImpDecl->getInstanceMethod(SetterSel); } // Look through local category implementations associated with the class. if (!Setter) { for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) { if (ObjCCategoryImpls[i]->getClassInterface() == IFace) Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel); } } // FIXME: we must check that the setter has property type. return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter, MemberLoc, BaseExpr); } } // Handle properties on qualified "id" protocols. const ObjCQualifiedIdType *QIdTy; if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) { // Check protocols on qualified interfaces. for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(), E = QIdTy->qual_end(); I != E; ++I) if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr); } // Handle 'field access' to vectors, such as 'V.xx'. if (BaseType->isExtVectorType() && OpKind == tok::period) { // Component access limited to variables (reject vec4.rg.g). if (!isa(BaseExpr) && !isa(BaseExpr) && !isa(BaseExpr)) return Diag(MemberLoc, diag::err_ext_vector_component_access) << BaseExpr->getSourceRange(); QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc); if (ret.isNull()) return true; return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc); } return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union) << BaseType << BaseExpr->getSourceRange(); } /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. Action::ExprResult Sema:: ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc, ExprTy **args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { Expr *Fn = static_cast(fn); Expr **Args = reinterpret_cast(args); assert(Fn && "no function call expression"); FunctionDecl *FDecl = NULL; OverloadedFunctionDecl *Ovl = NULL; // If we're directly calling a function or a set of overloaded // functions, get the appropriate declaration. { DeclRefExpr *DRExpr = NULL; if (ImplicitCastExpr *IcExpr = dyn_cast(Fn)) DRExpr = dyn_cast(IcExpr->getSubExpr()); else DRExpr = dyn_cast(Fn); if (DRExpr) { FDecl = dyn_cast(DRExpr->getDecl()); Ovl = dyn_cast(DRExpr->getDecl()); } } if (Ovl) { FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs, RParenLoc); if (!FDecl) return true; // Update Fn to refer to the actual function selected. Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(), Fn->getSourceRange().getBegin()); Fn->Destroy(Context); Fn = NewFn; } if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType()) return BuildCallToObjectOfClassType(Fn, LParenLoc, Args, NumArgs, CommaLocs, RParenLoc); // Promote the function operand. UsualUnaryConversions(Fn); // Make the call expr early, before semantic checks. This guarantees cleanup // of arguments and function on error. llvm::OwningPtr TheCall(new CallExpr(Fn, Args, NumArgs, Context.BoolTy, RParenLoc)); const FunctionType *FuncT; if (!Fn->getType()->isBlockPointerType()) { // C99 6.5.2.2p1 - "The expression that denotes the called function shall // have type pointer to function". const PointerType *PT = Fn->getType()->getAsPointerType(); if (PT == 0) return Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange(); FuncT = PT->getPointeeType()->getAsFunctionType(); } else { // This is a block call. FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()-> getAsFunctionType(); } if (FuncT == 0) return Diag(LParenLoc, diag::err_typecheck_call_not_function) << Fn->getType() << Fn->getSourceRange(); // We know the result type of the call, set it. TheCall->setType(FuncT->getResultType().getNonReferenceType()); if (const FunctionTypeProto *Proto = dyn_cast(FuncT)) { // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by // assignment, to the types of the corresponding parameter, ... unsigned NumArgsInProto = Proto->getNumArgs(); unsigned NumArgsToCheck = NumArgs; // If too few arguments are available (and we don't have default // arguments for the remaining parameters), don't make the call. if (NumArgs < NumArgsInProto) { if (!FDecl || NumArgs < FDecl->getMinRequiredArguments()) return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) << Fn->getType()->isBlockPointerType() << Fn->getSourceRange(); // Use default arguments for missing arguments NumArgsToCheck = NumArgsInProto; TheCall->setNumArgs(NumArgsInProto); } // If too many are passed and not variadic, error on the extras and drop // them. if (NumArgs > NumArgsInProto) { if (!Proto->isVariadic()) { Diag(Args[NumArgsInProto]->getLocStart(), diag::err_typecheck_call_too_many_args) << Fn->getType()->isBlockPointerType() << Fn->getSourceRange() << SourceRange(Args[NumArgsInProto]->getLocStart(), Args[NumArgs-1]->getLocEnd()); // This deletes the extra arguments. TheCall->setNumArgs(NumArgsInProto); } NumArgsToCheck = NumArgsInProto; } // Continue to check argument types (even if we have too few/many args). for (unsigned i = 0; i != NumArgsToCheck; i++) { QualType ProtoArgType = Proto->getArgType(i); Expr *Arg; if (i < NumArgs) Arg = Args[i]; else Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i)); QualType ArgType = Arg->getType(); // Pass the argument. if (PerformCopyInitialization(Arg, ProtoArgType, "passing")) return true; TheCall->setArg(i, Arg); } // If this is a variadic call, handle args passed through "...". if (Proto->isVariadic()) { // Promote the arguments (C99 6.5.2.2p7). for (unsigned i = NumArgsInProto; i != NumArgs; i++) { Expr *Arg = Args[i]; DefaultArgumentPromotion(Arg); TheCall->setArg(i, Arg); } } } else { assert(isa(FuncT) && "Unknown FunctionType!"); // Promote the arguments (C99 6.5.2.2p6). for (unsigned i = 0; i != NumArgs; i++) { Expr *Arg = Args[i]; DefaultArgumentPromotion(Arg); TheCall->setArg(i, Arg); } } // Do special checking on direct calls to functions. if (FDecl) return CheckFunctionCall(FDecl, TheCall.take()); return TheCall.take(); } Action::ExprResult Sema:: ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprTy *InitExpr) { assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); QualType literalType = QualType::getFromOpaquePtr(Ty); // FIXME: put back this assert when initializers are worked out. //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); Expr *literalExpr = static_cast(InitExpr); if (literalType->isArrayType()) { if (literalType->isVariableArrayType()) return Diag(LParenLoc, diag::err_variable_object_no_init) << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()); } else if (literalType->isIncompleteType()) { return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type) << literalType << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()); } if (CheckInitializerTypes(literalExpr, literalType, LParenLoc, DeclarationName())) return true; bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl(); if (isFileScope) { // 6.5.2.5p3 if (CheckForConstantInitializer(literalExpr, literalType)) return true; } return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope); } Action::ExprResult Sema:: ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit, InitListDesignations &Designators, SourceLocation RBraceLoc) { Expr **InitList = reinterpret_cast(initlist); // Semantic analysis for initializers is done by ActOnDeclarator() and // CheckInitializer() - it requires knowledge of the object being intialized. InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc, Designators.hasAnyDesignators()); E->setType(Context.VoidTy); // FIXME: just a place holder for now. return E; } /// CheckCastTypes - Check type constraints for casting between types. bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) { UsualUnaryConversions(castExpr); // C99 6.5.4p2: the cast type needs to be void or scalar and the expression // type needs to be scalar. if (castType->isVoidType()) { // Cast to void allows any expr type. } else if (!castType->isScalarType() && !castType->isVectorType()) { // GCC struct/union extension: allow cast to self. if (Context.getCanonicalType(castType) != Context.getCanonicalType(castExpr->getType()) || (!castType->isStructureType() && !castType->isUnionType())) { // Reject any other conversions to non-scalar types. return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar) << castType << castExpr->getSourceRange(); } // accept this, but emit an ext-warn. Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar) << castType << castExpr->getSourceRange(); } else if (!castExpr->getType()->isScalarType() && !castExpr->getType()->isVectorType()) { return Diag(castExpr->getLocStart(), diag::err_typecheck_expect_scalar_operand) << castExpr->getType() << castExpr->getSourceRange(); } else if (castExpr->getType()->isVectorType()) { if (CheckVectorCast(TyR, castExpr->getType(), castType)) return true; } else if (castType->isVectorType()) { if (CheckVectorCast(TyR, castType, castExpr->getType())) return true; } return false; } bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) { assert(VectorTy->isVectorType() && "Not a vector type!"); if (Ty->isVectorType() || Ty->isIntegerType()) { if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) return Diag(R.getBegin(), Ty->isVectorType() ? diag::err_invalid_conversion_between_vectors : diag::err_invalid_conversion_between_vector_and_integer) << VectorTy << Ty << R; } else return Diag(R.getBegin(), diag::err_invalid_conversion_between_vector_and_scalar) << VectorTy << Ty << R; return false; } Action::ExprResult Sema:: ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, SourceLocation RParenLoc, ExprTy *Op) { assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr"); Expr *castExpr = static_cast(Op); QualType castType = QualType::getFromOpaquePtr(Ty); if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr)) return true; return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc); } /// Note that lex is not null here, even if this is the gnu "x ?: y" extension. /// In that case, lex = cond. inline QualType Sema::CheckConditionalOperands( // C99 6.5.15 Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) { UsualUnaryConversions(cond); UsualUnaryConversions(lex); UsualUnaryConversions(rex); QualType condT = cond->getType(); QualType lexT = lex->getType(); QualType rexT = rex->getType(); // first, check the condition. if (!condT->isScalarType()) { // C99 6.5.15p2 Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT; return QualType(); } // Now check the two expressions. // If both operands have arithmetic type, do the usual arithmetic conversions // to find a common type: C99 6.5.15p3,5. if (lexT->isArithmeticType() && rexT->isArithmeticType()) { UsualArithmeticConversions(lex, rex); return lex->getType(); } // If both operands are the same structure or union type, the result is that // type. if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3 if (const RecordType *RHSRT = rexT->getAsRecordType()) if (LHSRT->getDecl() == RHSRT->getDecl()) // "If both the operands have structure or union type, the result has // that type." This implies that CV qualifiers are dropped. return lexT.getUnqualifiedType(); } // C99 6.5.15p5: "If both operands have void type, the result has void type." // The following || allows only one side to be void (a GCC-ism). if (lexT->isVoidType() || rexT->isVoidType()) { if (!lexT->isVoidType()) Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void) << rex->getSourceRange(); if (!rexT->isVoidType()) Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void) << lex->getSourceRange(); ImpCastExprToType(lex, Context.VoidTy); ImpCastExprToType(rex, Context.VoidTy); return Context.VoidTy; } // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has // the type of the other operand." if ((lexT->isPointerType() || lexT->isBlockPointerType() || Context.isObjCObjectPointerType(lexT)) && isNullPointerConstant(rex)) { ImpCastExprToType(rex, lexT); // promote the null to a pointer. return lexT; } if ((rexT->isPointerType() || rexT->isBlockPointerType() || Context.isObjCObjectPointerType(rexT)) && isNullPointerConstant(lex)) { ImpCastExprToType(lex, rexT); // promote the null to a pointer. return rexT; } // Handle the case where both operands are pointers before we handle null // pointer constants in case both operands are null pointer constants. if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6 if (const PointerType *RHSPT = rexT->getAsPointerType()) { // get the "pointed to" types QualType lhptee = LHSPT->getPointeeType(); QualType rhptee = RHSPT->getPointeeType(); // ignore qualifiers on void (C99 6.5.15p3, clause 6) if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { // Figure out necessary qualifiers (C99 6.5.15p6) QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers()); QualType destType = Context.getPointerType(destPointee); ImpCastExprToType(lex, destType); // add qualifiers if necessary ImpCastExprToType(rex, destType); // promote to void* return destType; } if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers()); QualType destType = Context.getPointerType(destPointee); ImpCastExprToType(lex, destType); // add qualifiers if necessary ImpCastExprToType(rex, destType); // promote to void* return destType; } QualType compositeType = lexT; // If either type is an Objective-C object type then check // compatibility according to Objective-C. if (Context.isObjCObjectPointerType(lexT) || Context.isObjCObjectPointerType(rexT)) { // If both operands are interfaces and either operand can be // assigned to the other, use that type as the composite // type. This allows // xxx ? (A*) a : (B*) b // where B is a subclass of A. // // Additionally, as for assignment, if either type is 'id' // allow silent coercion. Finally, if the types are // incompatible then make sure to use 'id' as the composite // type so the result is acceptable for sending messages to. // FIXME: This code should not be localized to here. Also this // should use a compatible check instead of abusing the // canAssignObjCInterfaces code. const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); if (LHSIface && RHSIface && Context.canAssignObjCInterfaces(LHSIface, RHSIface)) { compositeType = lexT; } else if (LHSIface && RHSIface && Context.canAssignObjCInterfaces(RHSIface, LHSIface)) { compositeType = rexT; } else if (Context.isObjCIdType(lhptee) || Context.isObjCIdType(rhptee)) { // FIXME: This code looks wrong, because isObjCIdType checks // the struct but getObjCIdType returns the pointer to // struct. This is horrible and should be fixed. compositeType = Context.getObjCIdType(); } else { QualType incompatTy = Context.getObjCIdType(); ImpCastExprToType(lex, incompatTy); ImpCastExprToType(rex, incompatTy); return incompatTy; } } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), rhptee.getUnqualifiedType())) { Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers) << lexT << rexT << lex->getSourceRange() << rex->getSourceRange(); // In this situation, we assume void* type. No especially good // reason, but this is what gcc does, and we do have to pick // to get a consistent AST. QualType incompatTy = Context.getPointerType(Context.VoidTy); ImpCastExprToType(lex, incompatTy); ImpCastExprToType(rex, incompatTy); return incompatTy; } // The pointer types are compatible. // C99 6.5.15p6: If both operands are pointers to compatible types *or* to // differently qualified versions of compatible types, the result type is // a pointer to an appropriately qualified version of the *composite* // type. // FIXME: Need to calculate the composite type. // FIXME: Need to add qualifiers ImpCastExprToType(lex, compositeType); ImpCastExprToType(rex, compositeType); return compositeType; } } // Need to handle "id" explicitly. Unlike "id", whose canonical type // evaluates to "struct objc_object *" (and is handled above when comparing // id with statically typed objects). if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) { // GCC allows qualified id and any Objective-C type to devolve to // id. Currently localizing to here until clear this should be // part of ObjCQualifiedIdTypesAreCompatible. if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) || (lexT->isObjCQualifiedIdType() && Context.isObjCObjectPointerType(rexT)) || (rexT->isObjCQualifiedIdType() && Context.isObjCObjectPointerType(lexT))) { // FIXME: This is not the correct composite type. This only // happens to work because id can more or less be used anywhere, // however this may change the type of method sends. // FIXME: gcc adds some type-checking of the arguments and emits // (confusing) incompatible comparison warnings in some // cases. Investigate. QualType compositeType = Context.getObjCIdType(); ImpCastExprToType(lex, compositeType); ImpCastExprToType(rex, compositeType); return compositeType; } } // Selection between block pointer types is ok as long as they are the same. if (lexT->isBlockPointerType() && rexT->isBlockPointerType() && Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT)) return lexT; // Otherwise, the operands are not compatible. Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands) << lexT << rexT << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, ExprTy *Cond, ExprTy *LHS, ExprTy *RHS) { Expr *CondExpr = (Expr *) Cond; Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS; // If this is the gnu "x ?: y" extension, analyze the types as though the LHS // was the condition. bool isLHSNull = LHSExpr == 0; if (isLHSNull) LHSExpr = CondExpr; QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr, QuestionLoc); if (result.isNull()) return true; return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr, RHSExpr, result); } // CheckPointerTypesForAssignment - This is a very tricky routine (despite // being closely modeled after the C99 spec:-). The odd characteristic of this // routine is it effectively iqnores the qualifiers on the top level pointee. // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. // FIXME: add a couple examples in this comment. Sema::AssignConvertType Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { QualType lhptee, rhptee; // get the "pointed to" type (ignoring qualifiers at the top level) lhptee = lhsType->getAsPointerType()->getPointeeType(); rhptee = rhsType->getAsPointerType()->getPointeeType(); // make sure we operate on the canonical type lhptee = Context.getCanonicalType(lhptee); rhptee = Context.getCanonicalType(rhptee); AssignConvertType ConvTy = Compatible; // C99 6.5.16.1p1: This following citation is common to constraints // 3 & 4 (below). ...and the type *pointed to* by the left has all the // qualifiers of the type *pointed to* by the right; // FIXME: Handle ASQualType if (!lhptee.isAtLeastAsQualifiedAs(rhptee)) ConvTy = CompatiblePointerDiscardsQualifiers; // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or // incomplete type and the other is a pointer to a qualified or unqualified // version of void... if (lhptee->isVoidType()) { if (rhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(rhptee->isFunctionType()); return FunctionVoidPointer; } if (rhptee->isVoidType()) { if (lhptee->isIncompleteOrObjectType()) return ConvTy; // As an extension, we allow cast to/from void* to function pointer. assert(lhptee->isFunctionType()); return FunctionVoidPointer; } // Check for ObjC interfaces const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); if (LHSIface && RHSIface && Context.canAssignObjCInterfaces(LHSIface, RHSIface)) return ConvTy; // ID acts sort of like void* for ObjC interfaces if (LHSIface && Context.isObjCIdType(rhptee)) return ConvTy; if (RHSIface && Context.isObjCIdType(lhptee)) return ConvTy; // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or // unqualified versions of compatible types, ... if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), rhptee.getUnqualifiedType())) return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers return ConvTy; } /// CheckBlockPointerTypesForAssignment - This routine determines whether two /// block pointer types are compatible or whether a block and normal pointer /// are compatible. It is more restrict than comparing two function pointer // types. Sema::AssignConvertType Sema::CheckBlockPointerTypesForAssignment(QualType lhsType, QualType rhsType) { QualType lhptee, rhptee; // get the "pointed to" type (ignoring qualifiers at the top level) lhptee = lhsType->getAsBlockPointerType()->getPointeeType(); rhptee = rhsType->getAsBlockPointerType()->getPointeeType(); // make sure we operate on the canonical type lhptee = Context.getCanonicalType(lhptee); rhptee = Context.getCanonicalType(rhptee); AssignConvertType ConvTy = Compatible; // For blocks we enforce that qualifiers are identical. if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers()) ConvTy = CompatiblePointerDiscardsQualifiers; if (!Context.typesAreBlockCompatible(lhptee, rhptee)) return IncompatibleBlockPointer; return ConvTy; } /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently /// has code to accommodate several GCC extensions when type checking /// pointers. Here are some objectionable examples that GCC considers warnings: /// /// int a, *pint; /// short *pshort; /// struct foo *pfoo; /// /// pint = pshort; // warning: assignment from incompatible pointer type /// a = pint; // warning: assignment makes integer from pointer without a cast /// pint = a; // warning: assignment makes pointer from integer without a cast /// pint = pfoo; // warning: assignment from incompatible pointer type /// /// As a result, the code for dealing with pointers is more complex than the /// C99 spec dictates. /// Sema::AssignConvertType Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { // Get canonical types. We're not formatting these types, just comparing // them. lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); if (lhsType == rhsType) return Compatible; // Common case: fast path an exact match. // If the left-hand side is a reference type, then we are in a // (rare!) case where we've allowed the use of references in C, // e.g., as a parameter type in a built-in function. In this case, // just make sure that the type referenced is compatible with the // right-hand side type. The caller is responsible for adjusting // lhsType so that the resulting expression does not have reference // type. if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) { if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) return Compatible; return Incompatible; } if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) { if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false)) return Compatible; // Relax integer conversions like we do for pointers below. if (rhsType->isIntegerType()) return IntToPointer; if (lhsType->isIntegerType()) return PointerToInt; return IncompatibleObjCQualifiedId; } if (lhsType->isVectorType() || rhsType->isVectorType()) { // For ExtVector, allow vector splats; float -> if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) if (LV->getElementType() == rhsType) return Compatible; // If we are allowing lax vector conversions, and LHS and RHS are both // vectors, the total size only needs to be the same. This is a bitcast; // no bits are changed but the result type is different. if (getLangOptions().LaxVectorConversions && lhsType->isVectorType() && rhsType->isVectorType()) { if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) return Compatible; } return Incompatible; } if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) return Compatible; if (isa(lhsType)) { if (rhsType->isIntegerType()) return IntToPointer; if (isa(rhsType)) return CheckPointerTypesForAssignment(lhsType, rhsType); if (rhsType->getAsBlockPointerType()) { if (lhsType->getAsPointerType()->getPointeeType()->isVoidType()) return Compatible; // Treat block pointers as objects. if (getLangOptions().ObjC1 && lhsType == Context.getCanonicalType(Context.getObjCIdType())) return Compatible; } return Incompatible; } if (isa(lhsType)) { if (rhsType->isIntegerType()) return IntToPointer; // Treat block pointers as objects. if (getLangOptions().ObjC1 && rhsType == Context.getCanonicalType(Context.getObjCIdType())) return Compatible; if (rhsType->isBlockPointerType()) return CheckBlockPointerTypesForAssignment(lhsType, rhsType); if (const PointerType *RHSPT = rhsType->getAsPointerType()) { if (RHSPT->getPointeeType()->isVoidType()) return Compatible; } return Incompatible; } if (isa(rhsType)) { // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. if (lhsType == Context.BoolTy) return Compatible; if (lhsType->isIntegerType()) return PointerToInt; if (isa(lhsType)) return CheckPointerTypesForAssignment(lhsType, rhsType); if (isa(lhsType) && rhsType->getAsPointerType()->getPointeeType()->isVoidType()) return Compatible; return Incompatible; } if (isa(lhsType) && isa(rhsType)) { if (Context.typesAreCompatible(lhsType, rhsType)) return Compatible; } return Incompatible; } Sema::AssignConvertType Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { if (getLangOptions().CPlusPlus) { if (!lhsType->isRecordType()) { // C++ 5.17p3: If the left operand is not of class type, the // expression is implicitly converted (C++ 4) to the // cv-unqualified type of the left operand. if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType())) return Incompatible; else return Compatible; } // FIXME: Currently, we fall through and treat C++ classes like C // structures. } // C99 6.5.16.1p1: the left operand is a pointer and the right is // a null pointer constant. if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() || lhsType->isBlockPointerType()) && rExpr->isNullPointerConstant(Context)) { ImpCastExprToType(rExpr, lhsType); return Compatible; } // We don't allow conversion of non-null-pointer constants to integers. if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType()) return IntToBlockPointer; // This check seems unnatural, however it is necessary to ensure the proper // conversion of functions/arrays. If the conversion were done for all // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary // expressions that surpress this implicit conversion (&, sizeof). // // Suppress this for references: C++ 8.5.3p5. if (!lhsType->isReferenceType()) DefaultFunctionArrayConversion(rExpr); Sema::AssignConvertType result = CheckAssignmentConstraints(lhsType, rExpr->getType()); // C99 6.5.16.1p2: The value of the right operand is converted to the // type of the assignment expression. // CheckAssignmentConstraints allows the left-hand side to be a reference, // so that we can use references in built-in functions even in C. // The getNonReferenceType() call makes sure that the resulting expression // does not have reference type. if (rExpr->getType() != lhsType) ImpCastExprToType(rExpr, lhsType.getNonReferenceType()); return result; } Sema::AssignConvertType Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) { return CheckAssignmentConstraints(lhsType, rhsType); } QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { Diag(Loc, diag::err_typecheck_invalid_operands) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) { // For conversion purposes, we ignore any qualifiers. // For example, "const float" and "float" are equivalent. QualType lhsType = Context.getCanonicalType(lex->getType()).getUnqualifiedType(); QualType rhsType = Context.getCanonicalType(rex->getType()).getUnqualifiedType(); // If the vector types are identical, return. if (lhsType == rhsType) return lhsType; // Handle the case of a vector & extvector type of the same size and element // type. It would be nice if we only had one vector type someday. if (getLangOptions().LaxVectorConversions) if (const VectorType *LV = lhsType->getAsVectorType()) if (const VectorType *RV = rhsType->getAsVectorType()) if (LV->getElementType() == RV->getElementType() && LV->getNumElements() == RV->getNumElements()) return lhsType->isExtVectorType() ? lhsType : rhsType; // If the lhs is an extended vector and the rhs is a scalar of the same type // or a literal, promote the rhs to the vector type. if (const ExtVectorType *V = lhsType->getAsExtVectorType()) { QualType eltType = V->getElementType(); if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) || (eltType->isIntegerType() && isa(rex)) || (eltType->isFloatingType() && isa(rex))) { ImpCastExprToType(rex, lhsType); return lhsType; } } // If the rhs is an extended vector and the lhs is a scalar of the same type, // promote the lhs to the vector type. if (const ExtVectorType *V = rhsType->getAsExtVectorType()) { QualType eltType = V->getElementType(); if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) || (eltType->isIntegerType() && isa(lex)) || (eltType->isFloatingType() && isa(lex))) { ImpCastExprToType(lex, rhsType); return rhsType; } } // You cannot convert between vector values of different size. Diag(Loc, diag::err_typecheck_vector_not_convertable) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } inline QualType Sema::CheckMultiplyDivideOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { QualType lhsType = lex->getType(), rhsType = rex->getType(); if (lhsType->isVectorType() || rhsType->isVectorType()) return CheckVectorOperands(Loc, lex, rex); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) return compType; return InvalidOperands(Loc, lex, rex); } inline QualType Sema::CheckRemainderOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { QualType lhsType = lex->getType(), rhsType = rex->getType(); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) return compType; return InvalidOperands(Loc, lex, rex); } inline QualType Sema::CheckAdditionOperands( // C99 6.5.6 Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorOperands(Loc, lex, rex); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); // handle the common case first (both operands are arithmetic). if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) return compType; // Put any potential pointer into PExp Expr* PExp = lex, *IExp = rex; if (IExp->getType()->isPointerType()) std::swap(PExp, IExp); if (const PointerType* PTy = PExp->getType()->getAsPointerType()) { if (IExp->getType()->isIntegerType()) { // Check for arithmetic on pointers to incomplete types if (!PTy->getPointeeType()->isObjectType()) { if (PTy->getPointeeType()->isVoidType()) { Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); } else { Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type) << lex->getType() << lex->getSourceRange(); return QualType(); } } return PExp->getType(); } } return InvalidOperands(Loc, lex, rex); } // C99 6.5.6 QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorOperands(Loc, lex, rex); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); // Enforce type constraints: C99 6.5.6p3. // Handle the common case first (both operands are arithmetic). if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) return compType; // Either ptr - int or ptr - ptr. if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) { QualType lpointee = LHSPTy->getPointeeType(); // The LHS must be an object type, not incomplete, function, etc. if (!lpointee->isObjectType()) { // Handle the GNU void* extension. if (lpointee->isVoidType()) { Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); } else { Diag(Loc, diag::err_typecheck_sub_ptr_object) << lex->getType() << lex->getSourceRange(); return QualType(); } } // The result type of a pointer-int computation is the pointer type. if (rex->getType()->isIntegerType()) return lex->getType(); // Handle pointer-pointer subtractions. if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) { QualType rpointee = RHSPTy->getPointeeType(); // RHS must be an object type, unless void (GNU). if (!rpointee->isObjectType()) { // Handle the GNU void* extension. if (rpointee->isVoidType()) { if (!lpointee->isVoidType()) Diag(Loc, diag::ext_gnu_void_ptr) << lex->getSourceRange() << rex->getSourceRange(); } else { Diag(Loc, diag::err_typecheck_sub_ptr_object) << rex->getType() << rex->getSourceRange(); return QualType(); } } // Pointee types must be compatible. if (!Context.typesAreCompatible( Context.getCanonicalType(lpointee).getUnqualifiedType(), Context.getCanonicalType(rpointee).getUnqualifiedType())) { Diag(Loc, diag::err_typecheck_sub_ptr_compatible) << lex->getType() << rex->getType() << lex->getSourceRange() << rex->getSourceRange(); return QualType(); } return Context.getPointerDiffType(); } } return InvalidOperands(Loc, lex, rex); } // C99 6.5.7 QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { // C99 6.5.7p2: Each of the operands shall have integer type. if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) return InvalidOperands(Loc, lex, rex); // Shifts don't perform usual arithmetic conversions, they just do integer // promotions on each operand. C99 6.5.7p3 if (!isCompAssign) UsualUnaryConversions(lex); UsualUnaryConversions(rex); // "The type of the result is that of the promoted left operand." return lex->getType(); } static bool areComparableObjCInterfaces(QualType LHS, QualType RHS, ASTContext& Context) { const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType(); const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType(); // ID acts sort of like void* for ObjC interfaces if (LHSIface && Context.isObjCIdType(RHS)) return true; if (RHSIface && Context.isObjCIdType(LHS)) return true; if (!LHSIface || !RHSIface) return false; return Context.canAssignObjCInterfaces(LHSIface, RHSIface) || Context.canAssignObjCInterfaces(RHSIface, LHSIface); } // C99 6.5.8 QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isRelational) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorCompareOperands(lex, rex, Loc, isRelational); // C99 6.5.8p3 / C99 6.5.9p4 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) UsualArithmeticConversions(lex, rex); else { UsualUnaryConversions(lex); UsualUnaryConversions(rex); } QualType lType = lex->getType(); QualType rType = rex->getType(); // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. if (!lType->isFloatingType()) { if (DeclRefExpr* DRL = dyn_cast(lex->IgnoreParens())) if (DeclRefExpr* DRR = dyn_cast(rex->IgnoreParens())) if (DRL->getDecl() == DRR->getDecl()) Diag(Loc, diag::warn_selfcomparison); } // The result of comparisons is 'bool' in C++, 'int' in C. QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy; if (isRelational) { if (lType->isRealType() && rType->isRealType()) return ResultTy; } else { // Check for comparisons of floating point operands using != and ==. if (lType->isFloatingType()) { assert (rType->isFloatingType()); CheckFloatComparison(Loc,lex,rex); } if (lType->isArithmeticType() && rType->isArithmeticType()) return ResultTy; } bool LHSIsNull = lex->isNullPointerConstant(Context); bool RHSIsNull = rex->isNullPointerConstant(Context); // All of the following pointer related warnings are GCC extensions, except // when handling null pointer constants. One day, we can consider making them // errors (when -pedantic-errors is enabled). if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 QualType LCanPointeeTy = Context.getCanonicalType(lType->getAsPointerType()->getPointeeType()); QualType RCanPointeeTy = Context.getCanonicalType(rType->getAsPointerType()->getPointeeType()); if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2 !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() && !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), RCanPointeeTy.getUnqualifiedType()) && !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) { Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType); // promote the pointer to pointer return ResultTy; } // Handle block pointer types. if (lType->isBlockPointerType() && rType->isBlockPointerType()) { QualType lpointee = lType->getAsBlockPointerType()->getPointeeType(); QualType rpointee = rType->getAsBlockPointerType()->getPointeeType(); if (!LHSIsNull && !RHSIsNull && !Context.typesAreBlockCompatible(lpointee, rpointee)) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType); // promote the pointer to pointer return ResultTy; } // Allow block pointers to be compared with null pointer constants. if ((lType->isBlockPointerType() && rType->isPointerType()) || (lType->isPointerType() && rType->isBlockPointerType())) { if (!LHSIsNull && !RHSIsNull) { Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); } ImpCastExprToType(rex, lType); // promote the pointer to pointer return ResultTy; } if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) { if (lType->isPointerType() || rType->isPointerType()) { const PointerType *LPT = lType->getAsPointerType(); const PointerType *RPT = rType->getAsPointerType(); bool LPtrToVoid = LPT ? Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false; bool RPtrToVoid = RPT ? Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false; if (!LPtrToVoid && !RPtrToVoid && !Context.typesAreCompatible(lType, rType)) { Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType); return ResultTy; } ImpCastExprToType(rex, lType); return ResultTy; } if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) { ImpCastExprToType(rex, lType); return ResultTy; } else { if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) { Diag(Loc, diag::warn_incompatible_qualified_id_operands) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType); return ResultTy; } } } if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) && rType->isIntegerType()) { if (!RHSIsNull) Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType); // promote the integer to pointer return ResultTy; } if (lType->isIntegerType() && (rType->isPointerType() || rType->isObjCQualifiedIdType())) { if (!LHSIsNull) Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(lex, rType); // promote the integer to pointer return ResultTy; } // Handle block pointers. if (lType->isBlockPointerType() && rType->isIntegerType()) { if (!RHSIsNull) Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(rex, lType); // promote the integer to pointer return ResultTy; } if (lType->isIntegerType() && rType->isBlockPointerType()) { if (!LHSIsNull) Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer) << lType << rType << lex->getSourceRange() << rex->getSourceRange(); ImpCastExprToType(lex, rType); // promote the integer to pointer return ResultTy; } return InvalidOperands(Loc, lex, rex); } /// CheckVectorCompareOperands - vector comparisons are a clang extension that /// operates on extended vector types. Instead of producing an IntTy result, /// like a scalar comparison, a vector comparison produces a vector of integer /// types. QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc, bool isRelational) { // Check to make sure we're operating on vectors of the same type and width, // Allowing one side to be a scalar of element type. QualType vType = CheckVectorOperands(Loc, lex, rex); if (vType.isNull()) return vType; QualType lType = lex->getType(); QualType rType = rex->getType(); // For non-floating point types, check for self-comparisons of the form // x == x, x != x, x < x, etc. These always evaluate to a constant, and // often indicate logic errors in the program. if (!lType->isFloatingType()) { if (DeclRefExpr* DRL = dyn_cast(lex->IgnoreParens())) if (DeclRefExpr* DRR = dyn_cast(rex->IgnoreParens())) if (DRL->getDecl() == DRR->getDecl()) Diag(Loc, diag::warn_selfcomparison); } // Check for comparisons of floating point operands using != and ==. if (!isRelational && lType->isFloatingType()) { assert (rType->isFloatingType()); CheckFloatComparison(Loc,lex,rex); } // Return the type for the comparison, which is the same as vector type for // integer vectors, or an integer type of identical size and number of // elements for floating point vectors. if (lType->isIntegerType()) return lType; const VectorType *VTy = lType->getAsVectorType(); // FIXME: need to deal with non-32b int / non-64b long long unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); if (TypeSize == 32) { return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); } assert(TypeSize == 64 && "Unhandled vector element size in vector compare"); return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); } inline QualType Sema::CheckBitwiseOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) { if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) return CheckVectorOperands(Loc, lex, rex); QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) return compType; return InvalidOperands(Loc, lex, rex); } inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] Expr *&lex, Expr *&rex, SourceLocation Loc) { UsualUnaryConversions(lex); UsualUnaryConversions(rex); if (lex->getType()->isScalarType() && rex->getType()->isScalarType()) return Context.IntTy; return InvalidOperands(Loc, lex, rex); } /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, /// emit an error and return true. If so, return false. static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context); if (IsLV == Expr::MLV_Valid) return false; unsigned Diag = 0; bool NeedType = false; switch (IsLV) { // C99 6.5.16p2 default: assert(0 && "Unknown result from isModifiableLvalue!"); case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break; case Expr::MLV_ArrayType: Diag = diag::err_typecheck_array_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_NotObjectType: Diag = diag::err_typecheck_non_object_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_LValueCast: Diag = diag::err_typecheck_lvalue_casts_not_supported; break; case Expr::MLV_InvalidExpression: Diag = diag::err_typecheck_expression_not_modifiable_lvalue; break; case Expr::MLV_IncompleteType: case Expr::MLV_IncompleteVoidType: Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue; NeedType = true; break; case Expr::MLV_DuplicateVectorComponents: Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue; break; case Expr::MLV_NotBlockQualified: Diag = diag::err_block_decl_ref_not_modifiable_lvalue; break; case Expr::MLV_ReadonlyProperty: Diag = diag::error_readonly_property_assignment; break; case Expr::MLV_NoSetterProperty: Diag = diag::error_nosetter_property_assignment; break; } if (NeedType) S.Diag(Loc, Diag) << E->getType() << E->getSourceRange(); else S.Diag(Loc, Diag) << E->getSourceRange(); return true; } // C99 6.5.16.1 QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc, QualType CompoundType) { // Verify that LHS is a modifiable lvalue, and emit error if not. if (CheckForModifiableLvalue(LHS, Loc, *this)) return QualType(); QualType LHSType = LHS->getType(); QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType; AssignConvertType ConvTy; if (CompoundType.isNull()) { // Simple assignment "x = y". ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS); // If the RHS is a unary plus or minus, check to see if they = and + are // right next to each other. If so, the user may have typo'd "x =+ 4" // instead of "x += 4". Expr *RHSCheck = RHS; if (ImplicitCastExpr *ICE = dyn_cast(RHSCheck)) RHSCheck = ICE->getSubExpr(); if (UnaryOperator *UO = dyn_cast(RHSCheck)) { if ((UO->getOpcode() == UnaryOperator::Plus || UO->getOpcode() == UnaryOperator::Minus) && Loc.isFileID() && UO->getOperatorLoc().isFileID() && // Only if the two operators are exactly adjacent. Loc.getFileLocWithOffset(1) == UO->getOperatorLoc()) Diag(Loc, diag::warn_not_compound_assign) << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-") << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc()); } } else { // Compound assignment "x += y" ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType); } if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, RHS, "assigning")) return QualType(); // C99 6.5.16p3: The type of an assignment expression is the type of the // left operand unless the left operand has qualified type, in which case // it is the unqualified version of the type of the left operand. // C99 6.5.16.1p2: In simple assignment, the value of the right operand // is converted to the type of the assignment expression (above). // C++ 5.17p1: the type of the assignment expression is that of its left // oprdu. return LHSType.getUnqualifiedType(); } // C99 6.5.17 QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) { // FIXME: what is required for LHS? // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions. DefaultFunctionArrayConversion(RHS); return RHS->getType(); } /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc) { QualType ResType = Op->getType(); assert(!ResType.isNull() && "no type for increment/decrement expression"); // C99 6.5.2.4p1: We allow complex as a GCC extension. if (ResType->isRealType()) { // OK! } else if (const PointerType *PT = ResType->getAsPointerType()) { // C99 6.5.2.4p2, 6.5.6p2 if (PT->getPointeeType()->isObjectType()) { // Pointer to object is ok! } else if (PT->getPointeeType()->isVoidType()) { // Pointer to void is extension. Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange(); } else { Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type) << ResType << Op->getSourceRange(); return QualType(); } } else if (ResType->isComplexType()) { // C99 does not support ++/-- on complex types, we allow as an extension. Diag(OpLoc, diag::ext_integer_increment_complex) << ResType << Op->getSourceRange(); } else { Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement) << ResType << Op->getSourceRange(); return QualType(); } // At this point, we know we have a real, complex or pointer type. // Now make sure the operand is a modifiable lvalue. if (CheckForModifiableLvalue(Op, OpLoc, *this)) return QualType(); return ResType; } /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). /// This routine allows us to typecheck complex/recursive expressions /// where the declaration is needed for type checking. We only need to /// handle cases when the expression references a function designator /// or is an lvalue. Here are some examples: /// - &(x) => x /// - &*****f => f for f a function designator. /// - &s.xx => s /// - &s.zz[1].yy -> s, if zz is an array /// - *(x + 1) -> x, if x is an array /// - &"123"[2] -> 0 /// - & __real__ x -> x static NamedDecl *getPrimaryDecl(Expr *E) { switch (E->getStmtClass()) { case Stmt::DeclRefExprClass: return cast(E)->getDecl(); case Stmt::MemberExprClass: // Fields cannot be declared with a 'register' storage class. // &X->f is always ok, even if X is declared register. if (cast(E)->isArrow()) return 0; return getPrimaryDecl(cast(E)->getBase()); case Stmt::ArraySubscriptExprClass: { // &X[4] and &4[X] refers to X if X is not a pointer. NamedDecl *D = getPrimaryDecl(cast(E)->getBase()); ValueDecl *VD = dyn_cast_or_null(D); if (!VD || VD->getType()->isPointerType()) return 0; else return VD; } case Stmt::UnaryOperatorClass: { UnaryOperator *UO = cast(E); switch(UO->getOpcode()) { case UnaryOperator::Deref: { // *(X + 1) refers to X if X is not a pointer. if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) { ValueDecl *VD = dyn_cast(D); if (!VD || VD->getType()->isPointerType()) return 0; return VD; } return 0; } case UnaryOperator::Real: case UnaryOperator::Imag: case UnaryOperator::Extension: return getPrimaryDecl(UO->getSubExpr()); default: return 0; } } case Stmt::BinaryOperatorClass: { BinaryOperator *BO = cast(E); // Handle cases involving pointer arithmetic. The result of an // Assign or AddAssign is not an lvalue so they can be ignored. // (x + n) or (n + x) => x if (BO->getOpcode() == BinaryOperator::Add) { if (BO->getLHS()->getType()->isPointerType()) { return getPrimaryDecl(BO->getLHS()); } else if (BO->getRHS()->getType()->isPointerType()) { return getPrimaryDecl(BO->getRHS()); } } return 0; } case Stmt::ParenExprClass: return getPrimaryDecl(cast(E)->getSubExpr()); case Stmt::ImplicitCastExprClass: // &X[4] when X is an array, has an implicit cast from array to pointer. return getPrimaryDecl(cast(E)->getSubExpr()); default: return 0; } } /// CheckAddressOfOperand - The operand of & must be either a function /// designator or an lvalue designating an object. If it is an lvalue, the /// object cannot be declared with storage class register or be a bit field. /// Note: The usual conversions are *not* applied to the operand of the & /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. /// In C++, the operand might be an overloaded function name, in which case /// we allow the '&' but retain the overloaded-function type. QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { if (getLangOptions().C99) { // Implement C99-only parts of addressof rules. if (UnaryOperator* uOp = dyn_cast(op)) { if (uOp->getOpcode() == UnaryOperator::Deref) // Per C99 6.5.3.2, the address of a deref always returns a valid result // (assuming the deref expression is valid). return uOp->getSubExpr()->getType(); } // Technically, there should be a check for array subscript // expressions here, but the result of one is always an lvalue anyway. } NamedDecl *dcl = getPrimaryDecl(op); Expr::isLvalueResult lval = op->isLvalue(Context); if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1 if (!dcl || !isa(dcl)) {// allow function designators // FIXME: emit more specific diag... Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof) << op->getSourceRange(); return QualType(); } } else if (MemberExpr *MemExpr = dyn_cast(op)) { // C99 6.5.3.2p1 if (MemExpr->getMemberDecl()->isBitField()) { Diag(OpLoc, diag::err_typecheck_address_of) << "bit-field" << op->getSourceRange(); return QualType(); } // Check for Apple extension for accessing vector components. } else if (isa(op) && cast(op)->getBase()->getType()->isVectorType()) { Diag(OpLoc, diag::err_typecheck_address_of) << "vector" << op->getSourceRange(); return QualType(); } else if (dcl) { // C99 6.5.3.2p1 // We have an lvalue with a decl. Make sure the decl is not declared // with the register storage-class specifier. if (const VarDecl *vd = dyn_cast(dcl)) { if (vd->getStorageClass() == VarDecl::Register) { Diag(OpLoc, diag::err_typecheck_address_of) << "register variable" << op->getSourceRange(); return QualType(); } } else if (isa(dcl)) return Context.OverloadTy; else assert(0 && "Unknown/unexpected decl type"); } // If the operand has type "type", the result has type "pointer to type". return Context.getPointerType(op->getType()); } QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) { UsualUnaryConversions(Op); QualType Ty = Op->getType(); // Note that per both C89 and C99, this is always legal, even if ptype is an // incomplete type or void. It would be possible to warn about dereferencing // a void pointer, but it's completely well-defined, and such a warning is // unlikely to catch any mistakes. if (const PointerType *PT = Ty->getAsPointerType()) return PT->getPointeeType(); Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer) << Ty << Op->getSourceRange(); return QualType(); } static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( tok::TokenKind Kind) { BinaryOperator::Opcode Opc; switch (Kind) { default: assert(0 && "Unknown binop!"); case tok::star: Opc = BinaryOperator::Mul; break; case tok::slash: Opc = BinaryOperator::Div; break; case tok::percent: Opc = BinaryOperator::Rem; break; case tok::plus: Opc = BinaryOperator::Add; break; case tok::minus: Opc = BinaryOperator::Sub; break; case tok::lessless: Opc = BinaryOperator::Shl; break; case tok::greatergreater: Opc = BinaryOperator::Shr; break; case tok::lessequal: Opc = BinaryOperator::LE; break; case tok::less: Opc = BinaryOperator::LT; break; case tok::greaterequal: Opc = BinaryOperator::GE; break; case tok::greater: Opc = BinaryOperator::GT; break; case tok::exclaimequal: Opc = BinaryOperator::NE; break; case tok::equalequal: Opc = BinaryOperator::EQ; break; case tok::amp: Opc = BinaryOperator::And; break; case tok::caret: Opc = BinaryOperator::Xor; break; case tok::pipe: Opc = BinaryOperator::Or; break; case tok::ampamp: Opc = BinaryOperator::LAnd; break; case tok::pipepipe: Opc = BinaryOperator::LOr; break; case tok::equal: Opc = BinaryOperator::Assign; break; case tok::starequal: Opc = BinaryOperator::MulAssign; break; case tok::slashequal: Opc = BinaryOperator::DivAssign; break; case tok::percentequal: Opc = BinaryOperator::RemAssign; break; case tok::plusequal: Opc = BinaryOperator::AddAssign; break; case tok::minusequal: Opc = BinaryOperator::SubAssign; break; case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break; case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break; case tok::ampequal: Opc = BinaryOperator::AndAssign; break; case tok::caretequal: Opc = BinaryOperator::XorAssign; break; case tok::pipeequal: Opc = BinaryOperator::OrAssign; break; case tok::comma: Opc = BinaryOperator::Comma; break; } return Opc; } static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( tok::TokenKind Kind) { UnaryOperator::Opcode Opc; switch (Kind) { default: assert(0 && "Unknown unary op!"); case tok::plusplus: Opc = UnaryOperator::PreInc; break; case tok::minusminus: Opc = UnaryOperator::PreDec; break; case tok::amp: Opc = UnaryOperator::AddrOf; break; case tok::star: Opc = UnaryOperator::Deref; break; case tok::plus: Opc = UnaryOperator::Plus; break; case tok::minus: Opc = UnaryOperator::Minus; break; case tok::tilde: Opc = UnaryOperator::Not; break; case tok::exclaim: Opc = UnaryOperator::LNot; break; case tok::kw___real: Opc = UnaryOperator::Real; break; case tok::kw___imag: Opc = UnaryOperator::Imag; break; case tok::kw___extension__: Opc = UnaryOperator::Extension; break; } return Opc; } /// CreateBuiltinBinOp - Creates a new built-in binary operation with /// operator @p Opc at location @c TokLoc. This routine only supports /// built-in operations; ActOnBinOp handles overloaded operators. Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc, unsigned Op, Expr *lhs, Expr *rhs) { QualType ResultTy; // Result type of the binary operator. QualType CompTy; // Computation type for compound assignments (e.g. '+=') BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op; switch (Opc) { default: assert(0 && "Unknown binary expr!"); case BinaryOperator::Assign: ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType()); break; case BinaryOperator::Mul: case BinaryOperator::Div: ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Rem: ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Add: ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Sub: ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc); break; case BinaryOperator::Shl: case BinaryOperator::Shr: ResultTy = CheckShiftOperands(lhs, rhs, OpLoc); break; case BinaryOperator::LE: case BinaryOperator::LT: case BinaryOperator::GE: case BinaryOperator::GT: ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true); break; case BinaryOperator::EQ: case BinaryOperator::NE: ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false); break; case BinaryOperator::And: case BinaryOperator::Xor: case BinaryOperator::Or: ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc); break; case BinaryOperator::LAnd: case BinaryOperator::LOr: ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc); break; case BinaryOperator::MulAssign: case BinaryOperator::DivAssign: CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true); if (!CompTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); break; case BinaryOperator::RemAssign: CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true); if (!CompTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); break; case BinaryOperator::AddAssign: CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true); if (!CompTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); break; case BinaryOperator::SubAssign: CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true); if (!CompTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); break; case BinaryOperator::ShlAssign: case BinaryOperator::ShrAssign: CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true); if (!CompTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); break; case BinaryOperator::AndAssign: case BinaryOperator::XorAssign: case BinaryOperator::OrAssign: CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true); if (!CompTy.isNull()) ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy); break; case BinaryOperator::Comma: ResultTy = CheckCommaOperands(lhs, rhs, OpLoc); break; } if (ResultTy.isNull()) return true; if (CompTy.isNull()) return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc); else return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc); } // Binary Operators. 'Tok' is the token for the operator. Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, ExprTy *LHS, ExprTy *RHS) { BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS; assert((lhs != 0) && "ActOnBinOp(): missing left expression"); assert((rhs != 0) && "ActOnBinOp(): missing right expression"); if (getLangOptions().CPlusPlus && (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() || rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) { // If this is one of the assignment operators, we only perform // overload resolution if the left-hand side is a class or // enumeration type (C++ [expr.ass]p3). if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) { return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs); } // Determine which overloaded operator we're dealing with. static const OverloadedOperatorKind OverOps[] = { OO_Star, OO_Slash, OO_Percent, OO_Plus, OO_Minus, OO_LessLess, OO_GreaterGreater, OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, OO_EqualEqual, OO_ExclaimEqual, OO_Amp, OO_Caret, OO_Pipe, OO_AmpAmp, OO_PipePipe, OO_Equal, OO_StarEqual, OO_SlashEqual, OO_PercentEqual, OO_PlusEqual, OO_MinusEqual, OO_LessLessEqual, OO_GreaterGreaterEqual, OO_AmpEqual, OO_CaretEqual, OO_PipeEqual, OO_Comma }; OverloadedOperatorKind OverOp = OverOps[Opc]; // Add the appropriate overloaded operators (C++ [over.match.oper]) // to the candidate set. OverloadCandidateSet CandidateSet; Expr *Args[2] = { lhs, rhs }; AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(lhs, Method) || PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(), "passing")) return true; } else { // Convert the arguments. if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(), "passing") || PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(), "passing")) return true; } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0], "passing") || PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1], "passing")) return true; break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(TokLoc, diag::err_ovl_ambiguous_oper) << BinaryOperator::getOpcodeStr(Opc) << lhs->getSourceRange() << rhs->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return true; } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. } // Build a built-in binary operation. return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs); } // Unary Operators. 'Tok' is the token for the operator. Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, ExprTy *input) { Expr *Input = (Expr*)input; UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op); if (getLangOptions().CPlusPlus && (Input->getType()->isRecordType() || Input->getType()->isEnumeralType())) { // Determine which overloaded operator we're dealing with. static const OverloadedOperatorKind OverOps[] = { OO_None, OO_None, OO_PlusPlus, OO_MinusMinus, OO_Amp, OO_Star, OO_Plus, OO_Minus, OO_Tilde, OO_Exclaim, OO_None, OO_None, OO_None, OO_None }; OverloadedOperatorKind OverOp = OverOps[Opc]; // Add the appropriate overloaded operators (C++ [over.match.oper]) // to the candidate set. OverloadCandidateSet CandidateSet; if (OverOp != OO_None) AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet); // Perform overload resolution. OverloadCandidateSet::iterator Best; switch (BestViableFunction(CandidateSet, Best)) { case OR_Success: { // We found a built-in operator or an overloaded operator. FunctionDecl *FnDecl = Best->Function; if (FnDecl) { // We matched an overloaded operator. Build a call to that // operator. // Convert the arguments. if (CXXMethodDecl *Method = dyn_cast(FnDecl)) { if (PerformObjectArgumentInitialization(Input, Method)) return true; } else { // Convert the arguments. if (PerformCopyInitialization(Input, FnDecl->getParamDecl(0)->getType(), "passing")) return true; } // Determine the result type QualType ResultTy = FnDecl->getType()->getAsFunctionType()->getResultType(); ResultTy = ResultTy.getNonReferenceType(); // Build the actual expression node. Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(), SourceLocation()); UsualUnaryConversions(FnExpr); return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc); } else { // We matched a built-in operator. Convert the arguments, then // break out so that we will build the appropriate built-in // operator node. if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0], "passing")) return true; break; } } case OR_No_Viable_Function: // No viable function; fall through to handling this as a // built-in operator, which will produce an error message for us. break; case OR_Ambiguous: Diag(OpLoc, diag::err_ovl_ambiguous_oper) << UnaryOperator::getOpcodeStr(Opc) << Input->getSourceRange(); PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); return true; } // Either we found no viable overloaded operator or we matched a // built-in operator. In either case, fall through to trying to // build a built-in operation. } QualType resultType; switch (Opc) { default: assert(0 && "Unimplemented unary expr!"); case UnaryOperator::PreInc: case UnaryOperator::PreDec: resultType = CheckIncrementDecrementOperand(Input, OpLoc); break; case UnaryOperator::AddrOf: resultType = CheckAddressOfOperand(Input, OpLoc); break; case UnaryOperator::Deref: DefaultFunctionArrayConversion(Input); resultType = CheckIndirectionOperand(Input, OpLoc); break; case UnaryOperator::Plus: case UnaryOperator::Minus: UsualUnaryConversions(Input); resultType = Input->getType(); if (resultType->isArithmeticType()) // C99 6.5.3.3p1 break; else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7 resultType->isEnumeralType()) break; else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6 Opc == UnaryOperator::Plus && resultType->isPointerType()) break; return Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange(); case UnaryOperator::Not: // bitwise complement UsualUnaryConversions(Input); resultType = Input->getType(); // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. if (resultType->isComplexType() || resultType->isComplexIntegerType()) // C99 does not support '~' for complex conjugation. Diag(OpLoc, diag::ext_integer_complement_complex) << resultType << Input->getSourceRange(); else if (!resultType->isIntegerType()) return Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange(); break; case UnaryOperator::LNot: // logical negation // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). DefaultFunctionArrayConversion(Input); resultType = Input->getType(); if (!resultType->isScalarType()) // C99 6.5.3.3p1 return Diag(OpLoc, diag::err_typecheck_unary_expr) << resultType << Input->getSourceRange(); // LNot always has type int. C99 6.5.3.3p5. resultType = Context.IntTy; break; case UnaryOperator::Real: case UnaryOperator::Imag: resultType = CheckRealImagOperand(Input, OpLoc); break; case UnaryOperator::Extension: resultType = Input->getType(); break; } if (resultType.isNull()) return true; return new UnaryOperator(Input, Opc, resultType, OpLoc); } /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, IdentifierInfo *LabelII) { // Look up the record for this label identifier. LabelStmt *&LabelDecl = LabelMap[LabelII]; // If we haven't seen this label yet, create a forward reference. It // will be validated and/or cleaned up in ActOnFinishFunctionBody. if (LabelDecl == 0) LabelDecl = new LabelStmt(LabLoc, LabelII, 0); // Create the AST node. The address of a label always has type 'void*'. return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl, Context.getPointerType(Context.VoidTy)); } Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt, SourceLocation RPLoc) { // "({..})" Stmt *SubStmt = static_cast(substmt); assert(SubStmt && isa(SubStmt) && "Invalid action invocation!"); CompoundStmt *Compound = cast(SubStmt); // FIXME: there are a variety of strange constraints to enforce here, for // example, it is not possible to goto into a stmt expression apparently. // More semantic analysis is needed. // FIXME: the last statement in the compount stmt has its value used. We // should not warn about it being unused. // If there are sub stmts in the compound stmt, take the type of the last one // as the type of the stmtexpr. QualType Ty = Context.VoidTy; if (!Compound->body_empty()) { Stmt *LastStmt = Compound->body_back(); // If LastStmt is a label, skip down through into the body. while (LabelStmt *Label = dyn_cast(LastStmt)) LastStmt = Label->getSubStmt(); if (Expr *LastExpr = dyn_cast(LastStmt)) Ty = LastExpr->getType(); } return new StmtExpr(Compound, Ty, LPLoc, RPLoc); } Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc, SourceLocation TypeLoc, TypeTy *argty, OffsetOfComponent *CompPtr, unsigned NumComponents, SourceLocation RPLoc) { QualType ArgTy = QualType::getFromOpaquePtr(argty); assert(!ArgTy.isNull() && "Missing type argument!"); // We must have at least one component that refers to the type, and the first // one is known to be a field designator. Verify that the ArgTy represents // a struct/union/class. if (!ArgTy->isRecordType()) return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy; // Otherwise, create a compound literal expression as the base, and // iteratively process the offsetof designators. Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false); // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a // GCC extension, diagnose them. if (NumComponents != 1) Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator) << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd); for (unsigned i = 0; i != NumComponents; ++i) { const OffsetOfComponent &OC = CompPtr[i]; if (OC.isBrackets) { // Offset of an array sub-field. TODO: Should we allow vector elements? const ArrayType *AT = Context.getAsArrayType(Res->getType()); if (!AT) { delete Res; return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType(); } // FIXME: C++: Verify that operator[] isn't overloaded. // C99 6.5.2.1p1 Expr *Idx = static_cast(OC.U.E); if (!Idx->getType()->isIntegerType()) return Diag(Idx->getLocStart(), diag::err_typecheck_subscript) << Idx->getSourceRange(); Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd); continue; } const RecordType *RC = Res->getType()->getAsRecordType(); if (!RC) { delete Res; return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType(); } // Get the decl corresponding to this. RecordDecl *RD = RC->getDecl(); FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo); if (!MemberDecl) return Diag(BuiltinLoc, diag::err_typecheck_no_member) << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd); // FIXME: C++: Verify that MemberDecl isn't a static field. // FIXME: Verify that MemberDecl isn't a bitfield. // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't // matter here. Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType().getNonReferenceType()); } return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(), BuiltinLoc); } Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, TypeTy *arg1, TypeTy *arg2, SourceLocation RPLoc) { QualType argT1 = QualType::getFromOpaquePtr(arg1); QualType argT2 = QualType::getFromOpaquePtr(arg2); assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc); } Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond, ExprTy *expr1, ExprTy *expr2, SourceLocation RPLoc) { Expr *CondExpr = static_cast(cond); Expr *LHSExpr = static_cast(expr1); Expr *RHSExpr = static_cast(expr2); assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); // The conditional expression is required to be a constant expression. llvm::APSInt condEval(32); SourceLocation ExpLoc; if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant) << CondExpr->getSourceRange(); // If the condition is > zero, then the AST type is the same as the LSHExpr. QualType resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType(); return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc); } //===----------------------------------------------------------------------===// // Clang Extensions. //===----------------------------------------------------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is started. void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) { // Analyze block parameters. BlockSemaInfo *BSI = new BlockSemaInfo(); // Add BSI to CurBlock. BSI->PrevBlockInfo = CurBlock; CurBlock = BSI; BSI->ReturnType = 0; BSI->TheScope = BlockScope; BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc); PushDeclContext(BSI->TheDecl); } void Sema::ActOnBlockArguments(Declarator &ParamInfo) { // Analyze arguments to block. assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function && "Not a function declarator!"); DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun; CurBlock->hasPrototype = FTI.hasPrototype; CurBlock->isVariadic = true; // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes // no arguments, not a function that takes a single void argument. if (FTI.hasPrototype && FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() && ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) { // empty arg list, don't push any params. CurBlock->isVariadic = false; } else if (FTI.hasPrototype) { for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param); CurBlock->isVariadic = FTI.isVariadic; } CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size()); for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(), E = CurBlock->TheDecl->param_end(); AI != E; ++AI) // If this has an identifier, add it to the scope stack. if ((*AI)->getIdentifier()) PushOnScopeChains(*AI, CurBlock->TheScope); } /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) { // Ensure that CurBlock is deleted. llvm::OwningPtr CC(CurBlock); // Pop off CurBlock, handle nested blocks. CurBlock = CurBlock->PrevBlockInfo; // FIXME: Delete the ParmVarDecl objects as well??? } /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body, Scope *CurScope) { // Ensure that CurBlock is deleted. llvm::OwningPtr BSI(CurBlock); llvm::OwningPtr Body(static_cast(body)); PopDeclContext(); // Pop off CurBlock, handle nested blocks. CurBlock = CurBlock->PrevBlockInfo; QualType RetTy = Context.VoidTy; if (BSI->ReturnType) RetTy = QualType(BSI->ReturnType, 0); llvm::SmallVector ArgTypes; for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i) ArgTypes.push_back(BSI->Params[i]->getType()); QualType BlockTy; if (!BSI->hasPrototype) BlockTy = Context.getFunctionTypeNoProto(RetTy); else BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(), BSI->isVariadic, 0); BlockTy = Context.getBlockPointerType(BlockTy); BSI->TheDecl->setBody(Body.take()); return new BlockExpr(BSI->TheDecl, BlockTy); } /// ExprsMatchFnType - return true if the Exprs in array Args have /// QualTypes that match the QualTypes of the arguments of the FnType. /// The number of arguments has already been validated to match the number of /// arguments in FnType. static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType, ASTContext &Context) { unsigned NumParams = FnType->getNumArgs(); for (unsigned i = 0; i != NumParams; ++i) { QualType ExprTy = Context.getCanonicalType(Args[i]->getType()); QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i)); if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType()) return false; } return true; } Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs, SourceLocation *CommaLocs, SourceLocation BuiltinLoc, SourceLocation RParenLoc) { // __builtin_overload requires at least 2 arguments if (NumArgs < 2) return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) << SourceRange(BuiltinLoc, RParenLoc); // The first argument is required to be a constant expression. It tells us // the number of arguments to pass to each of the functions to be overloaded. Expr **Args = reinterpret_cast(args); Expr *NParamsExpr = Args[0]; llvm::APSInt constEval(32); SourceLocation ExpLoc; if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc)) return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant) << NParamsExpr->getSourceRange(); // Verify that the number of parameters is > 0 unsigned NumParams = constEval.getZExtValue(); if (NumParams == 0) return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant) << NParamsExpr->getSourceRange(); // Verify that we have at least 1 + NumParams arguments to the builtin. if ((NumParams + 1) > NumArgs) return Diag(RParenLoc, diag::err_typecheck_call_too_few_args) << SourceRange(BuiltinLoc, RParenLoc); // Figure out the return type, by matching the args to one of the functions // listed after the parameters. OverloadExpr *OE = 0; for (unsigned i = NumParams + 1; i < NumArgs; ++i) { // UsualUnaryConversions will convert the function DeclRefExpr into a // pointer to function. Expr *Fn = UsualUnaryConversions(Args[i]); const FunctionTypeProto *FnType = 0; if (const PointerType *PT = Fn->getType()->getAsPointerType()) FnType = PT->getPointeeType()->getAsFunctionTypeProto(); // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no // parameters, and the number of parameters must match the value passed to // the builtin. if (!FnType || (FnType->getNumArgs() != NumParams)) return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype) << Fn->getSourceRange(); // Scan the parameter list for the FunctionType, checking the QualType of // each parameter against the QualTypes of the arguments to the builtin. // If they match, return a new OverloadExpr. if (ExprsMatchFnType(Args+1, FnType, Context)) { if (OE) return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match) << OE->getFn()->getSourceRange(); // Remember our match, and continue processing the remaining arguments // to catch any errors. OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType().getNonReferenceType(), BuiltinLoc, RParenLoc); } } // Return the newly created OverloadExpr node, if we succeded in matching // exactly one of the candidate functions. if (OE) return OE; // If we didn't find a matching function Expr in the __builtin_overload list // the return an error. std::string typeNames; for (unsigned i = 0; i != NumParams; ++i) { if (i != 0) typeNames += ", "; typeNames += Args[i+1]->getType().getAsString(); } return Diag(BuiltinLoc, diag::err_overload_no_match) << typeNames << SourceRange(BuiltinLoc, RParenLoc); } Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, ExprTy *expr, TypeTy *type, SourceLocation RPLoc) { Expr *E = static_cast(expr); QualType T = QualType::getFromOpaquePtr(type); InitBuiltinVaListType(); // Get the va_list type QualType VaListType = Context.getBuiltinVaListType(); // Deal with implicit array decay; for example, on x86-64, // va_list is an array, but it's supposed to decay to // a pointer for va_arg. if (VaListType->isArrayType()) VaListType = Context.getArrayDecayedType(VaListType); // Make sure the input expression also decays appropriately. UsualUnaryConversions(E); if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible) return Diag(E->getLocStart(), diag::err_first_argument_to_va_arg_not_of_type_va_list) << E->getType() << E->getSourceRange(); // FIXME: Warn if a non-POD type is passed in. return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc); } Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) { // The type of __null will be int or long, depending on the size of // pointers on the target. QualType Ty; if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth()) Ty = Context.IntTy; else Ty = Context.LongTy; return new GNUNullExpr(Ty, TokenLoc); } bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, const char *Flavor) { // Decode the result (notice that AST's are still created for extensions). bool isInvalid = false; unsigned DiagKind; switch (ConvTy) { default: assert(0 && "Unknown conversion type"); case Compatible: return false; case PointerToInt: DiagKind = diag::ext_typecheck_convert_pointer_int; break; case IntToPointer: DiagKind = diag::ext_typecheck_convert_int_pointer; break; case IncompatiblePointer: DiagKind = diag::ext_typecheck_convert_incompatible_pointer; break; case FunctionVoidPointer: DiagKind = diag::ext_typecheck_convert_pointer_void_func; break; case CompatiblePointerDiscardsQualifiers: // If the qualifiers lost were because we were applying the // (deprecated) C++ conversion from a string literal to a char* // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME: // Ideally, this check would be performed in // CheckPointerTypesForAssignment. However, that would require a // bit of refactoring (so that the second argument is an // expression, rather than a type), which should be done as part // of a larger effort to fix CheckPointerTypesForAssignment for // C++ semantics. if (getLangOptions().CPlusPlus && IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType)) return false; DiagKind = diag::ext_typecheck_convert_discards_qualifiers; break; case IntToBlockPointer: DiagKind = diag::err_int_to_block_pointer; break; case IncompatibleBlockPointer: DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer; break; case IncompatibleObjCQualifiedId: // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since // it can give a more specific diagnostic. DiagKind = diag::warn_incompatible_qualified_id; break; case Incompatible: DiagKind = diag::err_typecheck_convert_incompatible; isInvalid = true; break; } Diag(Loc, DiagKind) << DstType << SrcType << Flavor << SrcExpr->getSourceRange(); return isInvalid; } bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result) { Expr::EvalResult EvalResult; if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() || EvalResult.HasSideEffects) { Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange(); if (EvalResult.Diag) { // We only show the note if it's not the usual "invalid subexpression" // or if it's actually in a subexpression. if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice || E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens()) Diag(EvalResult.DiagLoc, EvalResult.Diag); } return true; } if (EvalResult.Diag) { Diag(E->getExprLoc(), diag::ext_expr_not_ice) << E->getSourceRange(); // Print the reason it's not a constant. if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored) Diag(EvalResult.DiagLoc, EvalResult.Diag); } if (Result) *Result = EvalResult.Val.getInt(); return false; } bool Sema::isNullPointerConstant(const Expr *E) { Expr::EvalResult EvalResult; if (!E->isNullPointerConstant(EvalResult, Context)) return false; if (EvalResult.Diag) { Diag(E->getExprLoc(), diag::ext_null_pointer_expr_not_ice) << E->getSourceRange(); // Print the reason it's not a constant. if (Diags.getDiagnosticLevel(diag::ext_null_pointer_expr_not_ice) != Diagnostic::Ignored) Diag(EvalResult.DiagLoc, EvalResult.Diag); } return true; }