//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "COFFLinkerContext.h" #include "Chunks.h" #include "Config.h" #include "DebugTypes.h" #include "Driver.h" #include "SymbolTable.h" #include "Symbols.h" #include "lld/Common/DWARF.h" #include "llvm-c/lto.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" #include "llvm/DebugInfo/CodeView/SymbolRecord.h" #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" #include "llvm/DebugInfo/PDB/Native/NativeSession.h" #include "llvm/DebugInfo/PDB/Native/PDBFile.h" #include "llvm/IR/Mangler.h" #include "llvm/LTO/LTO.h" #include "llvm/Object/Binary.h" #include "llvm/Object/COFF.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Target/TargetOptions.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include using namespace llvm; using namespace llvm::COFF; using namespace llvm::codeview; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::coff; using llvm::Triple; using llvm::support::ulittle32_t; // Returns the last element of a path, which is supposed to be a filename. static StringRef getBasename(StringRef path) { return sys::path::filename(path, sys::path::Style::windows); } // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)". std::string lld::toString(const coff::InputFile *file) { if (!file) return ""; if (file->parentName.empty()) return std::string(file->getName()); return (getBasename(file->parentName) + "(" + getBasename(file->getName()) + ")") .str(); } const COFFSyncStream &coff::operator<<(const COFFSyncStream &s, const InputFile *f) { return s << toString(f); } /// Checks that Source is compatible with being a weak alias to Target. /// If Source is Undefined and has no weak alias set, makes it a weak /// alias to Target. static void checkAndSetWeakAlias(SymbolTable &symtab, InputFile *f, Symbol *source, Symbol *target, bool isAntiDep) { if (auto *u = dyn_cast(source)) { if (u->weakAlias && u->weakAlias != target) { // Ignore duplicated anti-dependency symbols. if (isAntiDep) return; if (!u->isAntiDep) { // Weak aliases as produced by GCC are named in the form // .weak.., where is the name // of another symbol emitted near the weak symbol. // Just use the definition from the first object file that defined // this weak symbol. if (symtab.ctx.config.allowDuplicateWeak) return; symtab.reportDuplicate(source, f); } } u->setWeakAlias(target, isAntiDep); } } static bool ignoredSymbolName(StringRef name) { return name == "@feat.00" || name == "@comp.id"; } ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m) : InputFile(ctx.symtab, ArchiveKind, m) {} void ArchiveFile::parse() { COFFLinkerContext &ctx = symtab.ctx; // Parse a MemoryBufferRef as an archive file. file = CHECK(Archive::create(mb), this); // Try to read symbols from ECSYMBOLS section on ARM64EC. if (ctx.symtabEC) { iterator_range symbols = CHECK(file->ec_symbols(), this); if (!symbols.empty()) { for (const Archive::Symbol &sym : symbols) ctx.symtabEC->addLazyArchive(this, sym); // Read both EC and native symbols on ARM64X. if (!ctx.hybridSymtab) return; } } // Read the symbol table to construct Lazy objects. for (const Archive::Symbol &sym : file->symbols()) ctx.symtab.addLazyArchive(this, sym); } // Returns a buffer pointing to a member file containing a given symbol. void ArchiveFile::addMember(const Archive::Symbol &sym) { const Archive::Child &c = CHECK(sym.getMember(), "could not get the member for symbol " + toCOFFString(symtab.ctx, sym)); // Return an empty buffer if we have already returned the same buffer. if (!seen.insert(c.getChildOffset()).second) return; symtab.ctx.driver.enqueueArchiveMember(c, sym, getName()); } std::vector lld::coff::getArchiveMembers(COFFLinkerContext &ctx, Archive *file) { std::vector v; Error err = Error::success(); for (const Archive::Child &c : file->children(err)) { MemoryBufferRef mbref = CHECK(c.getMemoryBufferRef(), file->getFileName() + ": could not get the buffer for a child of the archive"); v.push_back(mbref); } if (err) Fatal(ctx) << file->getFileName() << ": Archive::children failed: " << toString(std::move(err)); return v; } ObjFile::ObjFile(SymbolTable &symtab, COFFObjectFile *coffObj, bool lazy) : InputFile(symtab, ObjectKind, coffObj->getMemoryBufferRef(), lazy), coffObj(coffObj) {} ObjFile *ObjFile::create(COFFLinkerContext &ctx, MemoryBufferRef m, bool lazy) { // Parse a memory buffer as a COFF file. Expected> bin = createBinary(m); if (!bin) Fatal(ctx) << "Could not parse " << m.getBufferIdentifier(); auto *obj = dyn_cast(bin->get()); if (!obj) Fatal(ctx) << m.getBufferIdentifier() << " is not a COFF file"; bin->release(); return make(ctx.getSymtab(MachineTypes(obj->getMachine())), obj, lazy); } void ObjFile::parseLazy() { // Native object file. uint32_t numSymbols = coffObj->getNumberOfSymbols(); for (uint32_t i = 0; i < numSymbols; ++i) { COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); if (coffSym.isUndefined() || !coffSym.isExternal() || coffSym.isWeakExternal()) continue; StringRef name = check(coffObj->getSymbolName(coffSym)); if (coffSym.isAbsolute() && ignoredSymbolName(name)) continue; symtab.addLazyObject(this, name); if (!lazy) return; i += coffSym.getNumberOfAuxSymbols(); } } struct ECMapEntry { ulittle32_t src; ulittle32_t dst; ulittle32_t type; }; void ObjFile::initializeECThunks() { for (SectionChunk *chunk : hybmpChunks) { if (chunk->getContents().size() % sizeof(ECMapEntry)) { Err(symtab.ctx) << "Invalid .hybmp chunk size " << chunk->getContents().size(); continue; } const uint8_t *end = chunk->getContents().data() + chunk->getContents().size(); for (const uint8_t *iter = chunk->getContents().data(); iter != end; iter += sizeof(ECMapEntry)) { auto entry = reinterpret_cast(iter); switch (entry->type) { case Arm64ECThunkType::Entry: symtab.addEntryThunk(getSymbol(entry->src), getSymbol(entry->dst)); break; case Arm64ECThunkType::Exit: symtab.addExitThunk(getSymbol(entry->src), getSymbol(entry->dst)); break; case Arm64ECThunkType::GuestExit: break; default: Warn(symtab.ctx) << "Ignoring unknown EC thunk type " << entry->type; } } } } void ObjFile::parse() { // Read section and symbol tables. initializeChunks(); initializeSymbols(); initializeFlags(); initializeDependencies(); initializeECThunks(); } const coff_section *ObjFile::getSection(uint32_t i) { auto sec = coffObj->getSection(i); if (!sec) Fatal(symtab.ctx) << "getSection failed: #" << i << ": " << sec.takeError(); return *sec; } // We set SectionChunk pointers in the SparseChunks vector to this value // temporarily to mark comdat sections as having an unknown resolution. As we // walk the object file's symbol table, once we visit either a leader symbol or // an associative section definition together with the parent comdat's leader, // we set the pointer to either nullptr (to mark the section as discarded) or a // valid SectionChunk for that section. static SectionChunk *const pendingComdat = reinterpret_cast(1); void ObjFile::initializeChunks() { uint32_t numSections = coffObj->getNumberOfSections(); sparseChunks.resize(numSections + 1); for (uint32_t i = 1; i < numSections + 1; ++i) { const coff_section *sec = getSection(i); if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT) sparseChunks[i] = pendingComdat; else sparseChunks[i] = readSection(i, nullptr, ""); } } SectionChunk *ObjFile::readSection(uint32_t sectionNumber, const coff_aux_section_definition *def, StringRef leaderName) { const coff_section *sec = getSection(sectionNumber); StringRef name; if (Expected e = coffObj->getSectionName(sec)) name = *e; else Fatal(symtab.ctx) << "getSectionName failed: #" << sectionNumber << ": " << e.takeError(); if (name == ".drectve") { ArrayRef data; cantFail(coffObj->getSectionContents(sec, data)); directives = StringRef((const char *)data.data(), data.size()); return nullptr; } if (name == ".llvm_addrsig") { addrsigSec = sec; return nullptr; } if (name == ".llvm.call-graph-profile") { callgraphSec = sec; return nullptr; } // Object files may have DWARF debug info or MS CodeView debug info // (or both). // // DWARF sections don't need any special handling from the perspective // of the linker; they are just a data section containing relocations. // We can just link them to complete debug info. // // CodeView needs linker support. We need to interpret debug info, // and then write it to a separate .pdb file. // Ignore DWARF debug info unless requested to be included. if (!symtab.ctx.config.includeDwarfChunks && name.starts_with(".debug_")) return nullptr; if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE) return nullptr; SectionChunk *c; if (isArm64EC(getMachineType())) c = make(this, sec); else c = make(this, sec); if (def) c->checksum = def->CheckSum; // CodeView sections are stored to a different vector because they are not // linked in the regular manner. if (c->isCodeView()) debugChunks.push_back(c); else if (name == ".gfids$y") guardFidChunks.push_back(c); else if (name == ".giats$y") guardIATChunks.push_back(c); else if (name == ".gljmp$y") guardLJmpChunks.push_back(c); else if (name == ".gehcont$y") guardEHContChunks.push_back(c); else if (name == ".sxdata") sxDataChunks.push_back(c); else if (isArm64EC(getMachineType()) && name == ".hybmp$x") hybmpChunks.push_back(c); else if (symtab.ctx.config.tailMerge && sec->NumberOfRelocations == 0 && name == ".rdata" && leaderName.starts_with("??_C@")) // COFF sections that look like string literal sections (i.e. no // relocations, in .rdata, leader symbol name matches the MSVC name mangling // for string literals) are subject to string tail merging. MergeChunk::addSection(symtab.ctx, c); else if (name == ".rsrc" || name.starts_with(".rsrc$")) resourceChunks.push_back(c); else chunks.push_back(c); return c; } void ObjFile::includeResourceChunks() { chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end()); } void ObjFile::readAssociativeDefinition( COFFSymbolRef sym, const coff_aux_section_definition *def) { readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj())); } void ObjFile::readAssociativeDefinition(COFFSymbolRef sym, const coff_aux_section_definition *def, uint32_t parentIndex) { SectionChunk *parent = sparseChunks[parentIndex]; int32_t sectionNumber = sym.getSectionNumber(); auto diag = [&]() { StringRef name = check(coffObj->getSymbolName(sym)); StringRef parentName; const coff_section *parentSec = getSection(parentIndex); if (Expected e = coffObj->getSectionName(parentSec)) parentName = *e; Err(symtab.ctx) << toString(this) << ": associative comdat " << name << " (sec " << sectionNumber << ") has invalid reference to section " << parentName << " (sec " << parentIndex << ")"; }; if (parent == pendingComdat) { // This can happen if an associative comdat refers to another associative // comdat that appears after it (invalid per COFF spec) or to a section // without any symbols. diag(); return; } // Check whether the parent is prevailing. If it is, so are we, and we read // the section; otherwise mark it as discarded. if (parent) { SectionChunk *c = readSection(sectionNumber, def, ""); sparseChunks[sectionNumber] = c; if (c) { c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE; parent->addAssociative(c); } } else { sparseChunks[sectionNumber] = nullptr; } } void ObjFile::recordPrevailingSymbolForMingw( COFFSymbolRef sym, DenseMap &prevailingSectionMap) { // For comdat symbols in executable sections, where this is the copy // of the section chunk we actually include instead of discarding it, // add the symbol to a map to allow using it for implicitly // associating .[px]data$ sections to it. // Use the suffix from the .text$ instead of the leader symbol // name, for cases where the names differ (i386 mangling/decorations, // cases where the leader is a weak symbol named .weak.func.default*). int32_t sectionNumber = sym.getSectionNumber(); SectionChunk *sc = sparseChunks[sectionNumber]; if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) { StringRef name = sc->getSectionName().split('$').second; prevailingSectionMap[name] = sectionNumber; } } void ObjFile::maybeAssociateSEHForMingw( COFFSymbolRef sym, const coff_aux_section_definition *def, const DenseMap &prevailingSectionMap) { StringRef name = check(coffObj->getSymbolName(sym)); if (name.consume_front(".pdata$") || name.consume_front(".xdata$") || name.consume_front(".eh_frame$")) { // For MinGW, treat .[px]data$ and .eh_frame$ as implicitly // associative to the symbol . auto parentSym = prevailingSectionMap.find(name); if (parentSym != prevailingSectionMap.end()) readAssociativeDefinition(sym, def, parentSym->second); } } Symbol *ObjFile::createRegular(COFFSymbolRef sym) { SectionChunk *sc = sparseChunks[sym.getSectionNumber()]; if (sym.isExternal()) { StringRef name = check(coffObj->getSymbolName(sym)); if (sc) return symtab.addRegular(this, name, sym.getGeneric(), sc, sym.getValue()); // For MinGW symbols named .weak.* that point to a discarded section, // don't create an Undefined symbol. If nothing ever refers to the symbol, // everything should be fine. If something actually refers to the symbol // (e.g. the undefined weak alias), linking will fail due to undefined // references at the end. if (symtab.ctx.config.mingw && name.starts_with(".weak.")) return nullptr; return symtab.addUndefined(name, this, false); } if (sc) return make(this, /*Name*/ "", /*IsCOMDAT*/ false, /*IsExternal*/ false, sym.getGeneric(), sc); return nullptr; } void ObjFile::initializeSymbols() { uint32_t numSymbols = coffObj->getNumberOfSymbols(); symbols.resize(numSymbols); SmallVector, 8> weakAliases; std::vector pendingIndexes; pendingIndexes.reserve(numSymbols); DenseMap prevailingSectionMap; std::vector comdatDefs( coffObj->getNumberOfSections() + 1); COFFLinkerContext &ctx = symtab.ctx; for (uint32_t i = 0; i < numSymbols; ++i) { COFFSymbolRef coffSym = check(coffObj->getSymbol(i)); bool prevailingComdat; if (coffSym.isUndefined()) { symbols[i] = createUndefined(coffSym, false); } else if (coffSym.isWeakExternal()) { auto aux = coffSym.getAux(); bool overrideLazy = true; // On ARM64EC, external function calls emit a pair of weak-dependency // aliases: func to #func and #func to the func guess exit thunk // (instead of a single undefined func symbol, which would be emitted on // other targets). Allow such aliases to be overridden by lazy archive // symbols, just as we would for undefined symbols. if (isArm64EC(getMachineType()) && aux->Characteristics == IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY) { COFFSymbolRef targetSym = check(coffObj->getSymbol(aux->TagIndex)); if (!targetSym.isAnyUndefined()) { // If the target is defined, it may be either a guess exit thunk or // the actual implementation. If it's the latter, consider the alias // to be part of the implementation and override potential lazy // archive symbols. StringRef targetName = check(coffObj->getSymbolName(targetSym)); StringRef name = check(coffObj->getSymbolName(coffSym)); std::optional mangledName = getArm64ECMangledFunctionName(name); overrideLazy = mangledName == targetName; } else { overrideLazy = false; } } symbols[i] = createUndefined(coffSym, overrideLazy); weakAliases.emplace_back(symbols[i], aux); } else if (std::optional optSym = createDefined(coffSym, comdatDefs, prevailingComdat)) { symbols[i] = *optSym; if (ctx.config.mingw && prevailingComdat) recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap); } else { // createDefined() returns std::nullopt if a symbol belongs to a section // that was pending at the point when the symbol was read. This can happen // in two cases: // 1) section definition symbol for a comdat leader; // 2) symbol belongs to a comdat section associated with another section. // In both of these cases, we can expect the section to be resolved by // the time we finish visiting the remaining symbols in the symbol // table. So we postpone the handling of this symbol until that time. pendingIndexes.push_back(i); } i += coffSym.getNumberOfAuxSymbols(); } for (uint32_t i : pendingIndexes) { COFFSymbolRef sym = check(coffObj->getSymbol(i)); if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE) readAssociativeDefinition(sym, def); else if (ctx.config.mingw) maybeAssociateSEHForMingw(sym, def, prevailingSectionMap); } if (sparseChunks[sym.getSectionNumber()] == pendingComdat) { StringRef name = check(coffObj->getSymbolName(sym)); Log(ctx) << "comdat section " << name << " without leader and unassociated, discarding"; continue; } symbols[i] = createRegular(sym); } for (auto &kv : weakAliases) { Symbol *sym = kv.first; const coff_aux_weak_external *aux = kv.second; checkAndSetWeakAlias(symtab, this, sym, symbols[aux->TagIndex], aux->Characteristics == IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY); } // Free the memory used by sparseChunks now that symbol loading is finished. decltype(sparseChunks)().swap(sparseChunks); } Symbol *ObjFile::createUndefined(COFFSymbolRef sym, bool overrideLazy) { StringRef name = check(coffObj->getSymbolName(sym)); Symbol *s = symtab.addUndefined(name, this, overrideLazy); // Add an anti-dependency alias for undefined AMD64 symbols on the ARM64EC // target. if (symtab.isEC() && getMachineType() == AMD64) { auto u = dyn_cast(s); if (u && !u->weakAlias) { if (std::optional mangledName = getArm64ECMangledFunctionName(name)) { Symbol *m = symtab.addUndefined(saver().save(*mangledName), this, /*overrideLazy=*/false); u->setWeakAlias(m, /*antiDep=*/true); } } } return s; } static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj, int32_t section) { uint32_t numSymbols = obj->getNumberOfSymbols(); for (uint32_t i = 0; i < numSymbols; ++i) { COFFSymbolRef sym = check(obj->getSymbol(i)); if (sym.getSectionNumber() != section) continue; if (const coff_aux_section_definition *def = sym.getSectionDefinition()) return def; } return nullptr; } void ObjFile::handleComdatSelection( COFFSymbolRef sym, COMDATType &selection, bool &prevailing, DefinedRegular *leader, const llvm::object::coff_aux_section_definition *def) { if (prevailing) return; // There's already an existing comdat for this symbol: `Leader`. // Use the comdats's selection field to determine if the new // symbol in `Sym` should be discarded, produce a duplicate symbol // error, etc. SectionChunk *leaderChunk = leader->getChunk(); COMDATType leaderSelection = leaderChunk->selection; COFFLinkerContext &ctx = symtab.ctx; assert(leader->data && "Comdat leader without SectionChunk?"); if (isa(leader->file)) { // If the leader is only a LTO symbol, we don't know e.g. its final size // yet, so we can't do the full strict comdat selection checking yet. selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY; } if ((selection == IMAGE_COMDAT_SELECT_ANY && leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) || (selection == IMAGE_COMDAT_SELECT_LARGEST && leaderSelection == IMAGE_COMDAT_SELECT_ANY)) { // cl.exe picks "any" for vftables when building with /GR- and // "largest" when building with /GR. To be able to link object files // compiled with each flag, "any" and "largest" are merged as "largest". leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST; } // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as". // Clang on the other hand picks "any". To be able to link two object files // with a __declspec(selectany) declaration, one compiled with gcc and the // other with clang, we merge them as proper "same size as" if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY && leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) || (selection == IMAGE_COMDAT_SELECT_SAME_SIZE && leaderSelection == IMAGE_COMDAT_SELECT_ANY))) { leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE; } // Other than that, comdat selections must match. This is a bit more // strict than link.exe which allows merging "any" and "largest" if "any" // is the first symbol the linker sees, and it allows merging "largest" // with everything (!) if "largest" is the first symbol the linker sees. // Making this symmetric independent of which selection is seen first // seems better though. // (This behavior matches ModuleLinker::getComdatResult().) if (selection != leaderSelection) { Log(ctx) << "conflicting comdat type for " << leader << ": " << (int)leaderSelection << " in " << leader->getFile() << " and " << (int)selection << " in " << this; symtab.reportDuplicate(leader, this); return; } switch (selection) { case IMAGE_COMDAT_SELECT_NODUPLICATES: symtab.reportDuplicate(leader, this); break; case IMAGE_COMDAT_SELECT_ANY: // Nothing to do. break; case IMAGE_COMDAT_SELECT_SAME_SIZE: if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) { if (!ctx.config.mingw) { symtab.reportDuplicate(leader, this); } else { const coff_aux_section_definition *leaderDef = nullptr; if (leaderChunk->file) leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(), leaderChunk->getSectionNumber()); if (!leaderDef || leaderDef->Length != def->Length) symtab.reportDuplicate(leader, this); } } break; case IMAGE_COMDAT_SELECT_EXACT_MATCH: { SectionChunk newChunk(this, getSection(sym)); // link.exe only compares section contents here and doesn't complain // if the two comdat sections have e.g. different alignment. // Match that. if (leaderChunk->getContents() != newChunk.getContents()) symtab.reportDuplicate(leader, this, &newChunk, sym.getValue()); break; } case IMAGE_COMDAT_SELECT_ASSOCIATIVE: // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE. // (This means lld-link doesn't produce duplicate symbol errors for // associative comdats while link.exe does, but associate comdats // are never extern in practice.) llvm_unreachable("createDefined not called for associative comdats"); case IMAGE_COMDAT_SELECT_LARGEST: if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) { // Replace the existing comdat symbol with the new one. StringRef name = check(coffObj->getSymbolName(sym)); // FIXME: This is incorrect: With /opt:noref, the previous sections // make it into the final executable as well. Correct handling would // be to undo reading of the whole old section that's being replaced, // or doing one pass that determines what the final largest comdat // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading // only the largest one. replaceSymbol(leader, this, name, /*IsCOMDAT*/ true, /*IsExternal*/ true, sym.getGeneric(), nullptr); prevailing = true; } break; case IMAGE_COMDAT_SELECT_NEWEST: llvm_unreachable("should have been rejected earlier"); } } std::optional ObjFile::createDefined( COFFSymbolRef sym, std::vector &comdatDefs, bool &prevailing) { prevailing = false; auto getName = [&]() { return check(coffObj->getSymbolName(sym)); }; if (sym.isCommon()) { auto *c = make(sym); chunks.push_back(c); return symtab.addCommon(this, getName(), sym.getValue(), sym.getGeneric(), c); } COFFLinkerContext &ctx = symtab.ctx; if (sym.isAbsolute()) { StringRef name = getName(); if (name == "@feat.00") feat00Flags = sym.getValue(); // Skip special symbols. if (ignoredSymbolName(name)) return nullptr; if (sym.isExternal()) return symtab.addAbsolute(name, sym); return make(ctx, name, sym); } int32_t sectionNumber = sym.getSectionNumber(); if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG) return nullptr; if (llvm::COFF::isReservedSectionNumber(sectionNumber)) Fatal(ctx) << toString(this) << ": " << getName() << " should not refer to special section " << Twine(sectionNumber); if ((uint32_t)sectionNumber >= sparseChunks.size()) Fatal(ctx) << toString(this) << ": " << getName() << " should not refer to non-existent section " << Twine(sectionNumber); // Comdat handling. // A comdat symbol consists of two symbol table entries. // The first symbol entry has the name of the section (e.g. .text), fixed // values for the other fields, and one auxiliary record. // The second symbol entry has the name of the comdat symbol, called the // "comdat leader". // When this function is called for the first symbol entry of a comdat, // it sets comdatDefs and returns std::nullopt, and when it's called for the // second symbol entry it reads comdatDefs and then sets it back to nullptr. // Handle comdat leader. if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) { comdatDefs[sectionNumber] = nullptr; DefinedRegular *leader; if (sym.isExternal()) { std::tie(leader, prevailing) = symtab.addComdat(this, getName(), sym.getGeneric()); } else { leader = make(this, /*Name*/ "", /*IsCOMDAT*/ false, /*IsExternal*/ false, sym.getGeneric()); prevailing = true; } if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES || // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either. def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) { Fatal(ctx) << "unknown comdat type " << std::to_string((int)def->Selection) << " for " << getName() << " in " << toString(this); } COMDATType selection = (COMDATType)def->Selection; if (leader->isCOMDAT) handleComdatSelection(sym, selection, prevailing, leader, def); if (prevailing) { SectionChunk *c = readSection(sectionNumber, def, getName()); sparseChunks[sectionNumber] = c; if (!c) return nullptr; c->sym = cast(leader); c->selection = selection; cast(leader)->data = &c->repl; } else { sparseChunks[sectionNumber] = nullptr; } return leader; } // Prepare to handle the comdat leader symbol by setting the section's // ComdatDefs pointer if we encounter a non-associative comdat. if (sparseChunks[sectionNumber] == pendingComdat) { if (const coff_aux_section_definition *def = sym.getSectionDefinition()) { if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE) comdatDefs[sectionNumber] = def; } return std::nullopt; } return createRegular(sym); } MachineTypes ObjFile::getMachineType() const { return static_cast(coffObj->getMachine()); } ArrayRef ObjFile::getDebugSection(StringRef secName) { if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName)) return sec->consumeDebugMagic(); return {}; } // OBJ files systematically store critical information in a .debug$S stream, // even if the TU was compiled with no debug info. At least two records are // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is // currently used to initialize the hotPatchable member. void ObjFile::initializeFlags() { ArrayRef data = getDebugSection(".debug$S"); if (data.empty()) return; DebugSubsectionArray subsections; BinaryStreamReader reader(data, llvm::endianness::little); ExitOnError exitOnErr; exitOnErr(reader.readArray(subsections, data.size())); for (const DebugSubsectionRecord &ss : subsections) { if (ss.kind() != DebugSubsectionKind::Symbols) continue; unsigned offset = 0; // Only parse the first two records. We are only looking for S_OBJNAME // and S_COMPILE3, and they usually appear at the beginning of the // stream. for (unsigned i = 0; i < 2; ++i) { Expected sym = readSymbolFromStream(ss.getRecordData(), offset); if (!sym) { consumeError(sym.takeError()); return; } if (sym->kind() == SymbolKind::S_COMPILE3) { auto cs = cantFail(SymbolDeserializer::deserializeAs(sym.get())); hotPatchable = (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None; } if (sym->kind() == SymbolKind::S_OBJNAME) { auto objName = cantFail(SymbolDeserializer::deserializeAs( sym.get())); if (objName.Signature) pchSignature = objName.Signature; } offset += sym->length(); } } } // Depending on the compilation flags, OBJs can refer to external files, // necessary to merge this OBJ into the final PDB. We currently support two // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu. // And PDB type servers, when compiling with /Zi. This function extracts these // dependencies and makes them available as a TpiSource interface (see // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular // output even with /Yc and /Yu and with /Zi. void ObjFile::initializeDependencies() { COFFLinkerContext &ctx = symtab.ctx; if (!ctx.config.debug) return; bool isPCH = false; ArrayRef data = getDebugSection(".debug$P"); if (!data.empty()) isPCH = true; else data = getDebugSection(".debug$T"); // symbols but no types, make a plain, empty TpiSource anyway, because it // simplifies adding the symbols later. if (data.empty()) { if (!debugChunks.empty()) debugTypesObj = makeTpiSource(ctx, this); return; } // Get the first type record. It will indicate if this object uses a type // server (/Zi) or a PCH file (/Yu). CVTypeArray types; BinaryStreamReader reader(data, llvm::endianness::little); cantFail(reader.readArray(types, reader.getLength())); CVTypeArray::Iterator firstType = types.begin(); if (firstType == types.end()) return; // Remember the .debug$T or .debug$P section. debugTypes = data; // This object file is a PCH file that others will depend on. if (isPCH) { debugTypesObj = makePrecompSource(ctx, this); return; } // This object file was compiled with /Zi. Enqueue the PDB dependency. if (firstType->kind() == LF_TYPESERVER2) { TypeServer2Record ts = cantFail( TypeDeserializer::deserializeAs(firstType->data())); debugTypesObj = makeUseTypeServerSource(ctx, this, ts); enqueuePdbFile(ts.getName(), this); return; } // This object was compiled with /Yu. It uses types from another object file // with a matching signature. if (firstType->kind() == LF_PRECOMP) { PrecompRecord precomp = cantFail( TypeDeserializer::deserializeAs(firstType->data())); // We're better off trusting the LF_PRECOMP signature. In some cases the // S_OBJNAME record doesn't contain a valid PCH signature. if (precomp.Signature) pchSignature = precomp.Signature; debugTypesObj = makeUsePrecompSource(ctx, this, precomp); // Drop the LF_PRECOMP record from the input stream. debugTypes = debugTypes.drop_front(firstType->RecordData.size()); return; } // This is a plain old object file. debugTypesObj = makeTpiSource(ctx, this); } // The casing of the PDB path stamped in the OBJ can differ from the actual path // on disk. With this, we ensure to always use lowercase as a key for the // pdbInputFileInstances map, at least on Windows. static std::string normalizePdbPath(StringRef path) { #if defined(_WIN32) return path.lower(); #else // LINUX return std::string(path); #endif } // If existing, return the actual PDB path on disk. static std::optional findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) { // Ensure the file exists before anything else. In some cases, if the path // points to a removable device, Driver::enqueuePath() would fail with an // error (EAGAIN, "resource unavailable try again") which we want to skip // silently. if (llvm::sys::fs::exists(pdbPath)) return normalizePdbPath(pdbPath); StringRef objPath = !dependentFile->parentName.empty() ? dependentFile->parentName : dependentFile->getName(); // Currently, type server PDBs are only created by MSVC cl, which only runs // on Windows, so we can assume type server paths are Windows style. StringRef pdbName = sys::path::filename(pdbPath, sys::path::Style::windows); // Check if the PDB is in the same folder as the OBJ. SmallString<128> path; sys::path::append(path, sys::path::parent_path(objPath), pdbName); if (llvm::sys::fs::exists(path)) return normalizePdbPath(path); // Check if the PDB is in the output folder. path.clear(); sys::path::append(path, sys::path::parent_path(outputPath), pdbName); if (llvm::sys::fs::exists(path)) return normalizePdbPath(path); return std::nullopt; } PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m) : InputFile(ctx.symtab, PDBKind, m) {} PDBInputFile::~PDBInputFile() = default; PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx, StringRef path, ObjFile *fromFile) { auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile); if (!p) return nullptr; auto it = ctx.pdbInputFileInstances.find(*p); if (it != ctx.pdbInputFileInstances.end()) return it->second; return nullptr; } void PDBInputFile::parse() { symtab.ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this; std::unique_ptr thisSession; Error E = pdb::NativeSession::createFromPdb( MemoryBuffer::getMemBuffer(mb, false), thisSession); if (E) { loadErrorStr.emplace(toString(std::move(E))); return; // fail silently at this point - the error will be handled later, // when merging the debug type stream } session.reset(static_cast(thisSession.release())); pdb::PDBFile &pdbFile = session->getPDBFile(); auto expectedInfo = pdbFile.getPDBInfoStream(); // All PDB Files should have an Info stream. if (!expectedInfo) { loadErrorStr.emplace(toString(expectedInfo.takeError())); return; } debugTypesObj = makeTypeServerSource(symtab.ctx, this); } // Used only for DWARF debug info, which is not common (except in MinGW // environments). This returns an optional pair of file name and line // number for where the variable was defined. std::optional> ObjFile::getVariableLocation(StringRef var) { if (!dwarf) { dwarf = make(DWARFContext::create(*getCOFFObj())); if (!dwarf) return std::nullopt; } if (symtab.machine == I386) var.consume_front("_"); std::optional> ret = dwarf->getVariableLoc(var); if (!ret) return std::nullopt; return std::make_pair(saver().save(ret->first), ret->second); } // Used only for DWARF debug info, which is not common (except in MinGW // environments). std::optional ObjFile::getDILineInfo(uint32_t offset, uint32_t sectionIndex) { if (!dwarf) { dwarf = make(DWARFContext::create(*getCOFFObj())); if (!dwarf) return std::nullopt; } return dwarf->getDILineInfo(offset, sectionIndex); } void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) { auto p = findPdbPath(path.str(), fromFile, symtab.ctx.config.outputFile); if (!p) return; auto it = symtab.ctx.pdbInputFileInstances.emplace(*p, nullptr); if (!it.second) return; // already scheduled for load symtab.ctx.driver.enqueuePDB(*p); } ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m) : InputFile(ctx.symtab, ImportKind, m), live(!ctx.config.doGC) {} MachineTypes ImportFile::getMachineType() const { uint16_t machine = reinterpret_cast(mb.getBufferStart()) ->Machine; return MachineTypes(machine); } ImportThunkChunk *ImportFile::makeImportThunk() { switch (hdr->Machine) { case AMD64: return make(symtab.ctx, impSym); case I386: return make(symtab.ctx, impSym); case ARM64: return make(symtab.ctx, impSym, ARM64); case ARMNT: return make(symtab.ctx, impSym); } llvm_unreachable("unknown machine type"); } void ImportFile::parse() { const auto *hdr = reinterpret_cast(mb.getBufferStart()); // Check if the total size is valid. if (mb.getBufferSize() < sizeof(*hdr) || mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData) Fatal(symtab.ctx) << "broken import library"; // Read names and create an __imp_ symbol. StringRef buf = mb.getBuffer().substr(sizeof(*hdr)); auto split = buf.split('\0'); buf = split.second; StringRef name; if (isArm64EC(hdr->Machine)) { if (std::optional demangledName = getArm64ECDemangledFunctionName(split.first)) name = saver().save(*demangledName); } if (name.empty()) name = saver().save(split.first); StringRef impName = saver().save("__imp_" + name); dllName = buf.split('\0').first; StringRef extName; switch (hdr->getNameType()) { case IMPORT_ORDINAL: extName = ""; break; case IMPORT_NAME: extName = name; break; case IMPORT_NAME_NOPREFIX: extName = ltrim1(name, "?@_"); break; case IMPORT_NAME_UNDECORATE: extName = ltrim1(name, "?@_"); extName = extName.substr(0, extName.find('@')); break; case IMPORT_NAME_EXPORTAS: extName = buf.substr(dllName.size() + 1).split('\0').first; break; } this->hdr = hdr; externalName = extName; bool isCode = hdr->getType() == llvm::COFF::IMPORT_CODE; if (!symtab.isEC()) { impSym = symtab.addImportData(impName, this, location); } else { // In addition to the regular IAT, ARM64EC also contains an auxiliary IAT, // which holds addresses that are guaranteed to be callable directly from // ARM64 code. Function symbol naming is swapped: __imp_ symbols refer to // the auxiliary IAT, while __imp_aux_ symbols refer to the regular IAT. For // data imports, the naming is reversed. StringRef auxImpName = saver().save("__imp_aux_" + name); if (isCode) { impSym = symtab.addImportData(auxImpName, this, location); impECSym = symtab.addImportData(impName, this, auxLocation); } else { impSym = symtab.addImportData(impName, this, location); impECSym = symtab.addImportData(auxImpName, this, auxLocation); } if (!impECSym) return; StringRef auxImpCopyName = saver().save("__auximpcopy_" + name); auxImpCopySym = symtab.addImportData(auxImpCopyName, this, auxCopyLocation); if (!auxImpCopySym) return; } // If this was a duplicate, we logged an error but may continue; // in this case, impSym is nullptr. if (!impSym) return; if (hdr->getType() == llvm::COFF::IMPORT_CONST) static_cast(symtab.addImportData(name, this, location)); // If type is function, we need to create a thunk which jump to an // address pointed by the __imp_ symbol. (This allows you to call // DLL functions just like regular non-DLL functions.) if (isCode) { if (!symtab.isEC()) { thunkSym = symtab.addImportThunk(name, impSym, makeImportThunk()); } else { thunkSym = symtab.addImportThunk( name, impSym, make(symtab.ctx, impSym)); if (std::optional mangledName = getArm64ECMangledFunctionName(name)) { StringRef auxThunkName = saver().save(*mangledName); auxThunkSym = symtab.addImportThunk( auxThunkName, impECSym, make(symtab.ctx, impECSym, ARM64EC)); } StringRef impChkName = saver().save("__impchk_" + name); impchkThunk = make(this); impchkThunk->sym = symtab.addImportThunk(impChkName, impSym, impchkThunk); symtab.ctx.driver.pullArm64ECIcallHelper(); } } } BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb, StringRef archiveName, uint64_t offsetInArchive, bool lazy) : InputFile(ctx.symtab, BitcodeKind, mb, lazy) { std::string path = mb.getBufferIdentifier().str(); if (ctx.config.thinLTOIndexOnly) path = replaceThinLTOSuffix(mb.getBufferIdentifier(), ctx.config.thinLTOObjectSuffixReplace.first, ctx.config.thinLTOObjectSuffixReplace.second); // ThinLTO assumes that all MemoryBufferRefs given to it have a unique // name. If two archives define two members with the same name, this // causes a collision which result in only one of the objects being taken // into consideration at LTO time (which very likely causes undefined // symbols later in the link stage). So we append file offset to make // filename unique. MemoryBufferRef mbref(mb.getBuffer(), saver().save(archiveName.empty() ? path : archiveName + sys::path::filename(path) + utostr(offsetInArchive))); obj = check(lto::InputFile::create(mbref)); } BitcodeFile::~BitcodeFile() = default; void BitcodeFile::parse() { llvm::StringSaver &saver = lld::saver(); std::vector> comdat(obj->getComdatTable().size()); for (size_t i = 0; i != obj->getComdatTable().size(); ++i) // FIXME: Check nodeduplicate comdat[i] = symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first)); for (const lto::InputFile::Symbol &objSym : obj->symbols()) { StringRef symName = saver.save(objSym.getName()); int comdatIndex = objSym.getComdatIndex(); Symbol *sym; SectionChunk *fakeSC = nullptr; if (objSym.isExecutable()) fakeSC = &symtab.ctx.ltoTextSectionChunk.chunk; else fakeSC = &symtab.ctx.ltoDataSectionChunk.chunk; if (objSym.isUndefined()) { sym = symtab.addUndefined(symName, this, false); if (objSym.isWeak()) sym->deferUndefined = true; // If one LTO object file references (i.e. has an undefined reference to) // a symbol with an __imp_ prefix, the LTO compilation itself sees it // as unprefixed but with a dllimport attribute instead, and doesn't // understand the relation to a concrete IR symbol with the __imp_ prefix. // // For such cases, mark the symbol as used in a regular object (i.e. the // symbol must be retained) so that the linker can associate the // references in the end. If the symbol is defined in an import library // or in a regular object file, this has no effect, but if it is defined // in another LTO object file, this makes sure it is kept, to fulfill // the reference when linking the output of the LTO compilation. if (symName.starts_with("__imp_")) sym->isUsedInRegularObj = true; } else if (objSym.isCommon()) { sym = symtab.addCommon(this, symName, objSym.getCommonSize()); } else if (objSym.isWeak() && objSym.isIndirect()) { // Weak external. sym = symtab.addUndefined(symName, this, true); std::string fallback = std::string(objSym.getCOFFWeakExternalFallback()); Symbol *alias = symtab.addUndefined(saver.save(fallback)); checkAndSetWeakAlias(symtab, this, sym, alias, false); } else if (comdatIndex != -1) { if (symName == obj->getComdatTable()[comdatIndex].first) { sym = comdat[comdatIndex].first; if (cast(sym)->data == nullptr) cast(sym)->data = &fakeSC->repl; } else if (comdat[comdatIndex].second) { sym = symtab.addRegular(this, symName, nullptr, fakeSC); } else { sym = symtab.addUndefined(symName, this, false); } } else { sym = symtab.addRegular(this, symName, nullptr, fakeSC, 0, objSym.isWeak()); } symbols.push_back(sym); if (objSym.isUsed()) symtab.ctx.config.gcroot.push_back(sym); } directives = saver.save(obj->getCOFFLinkerOpts()); } void BitcodeFile::parseLazy() { for (const lto::InputFile::Symbol &sym : obj->symbols()) if (!sym.isUndefined()) { symtab.addLazyObject(this, sym.getName()); if (!lazy) return; } } MachineTypes BitcodeFile::getMachineType() const { Triple t(obj->getTargetTriple()); switch (t.getArch()) { case Triple::x86_64: return AMD64; case Triple::x86: return I386; case Triple::arm: case Triple::thumb: return ARMNT; case Triple::aarch64: return t.isWindowsArm64EC() ? ARM64EC : ARM64; default: return IMAGE_FILE_MACHINE_UNKNOWN; } } std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix, StringRef repl) { if (path.consume_back(suffix)) return (path + repl).str(); return std::string(path); } static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) { for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) { const coff_section *sec = CHECK(coffObj->getSection(i), file); if (rva >= sec->VirtualAddress && rva <= sec->VirtualAddress + sec->VirtualSize) { return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0; } } return false; } void DLLFile::parse() { // Parse a memory buffer as a PE-COFF executable. std::unique_ptr bin = CHECK(createBinary(mb), this); if (auto *obj = dyn_cast(bin.get())) { bin.release(); coffObj.reset(obj); } else { Err(symtab.ctx) << toString(this) << " is not a COFF file"; return; } if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) { Err(symtab.ctx) << toString(this) << " is not a PE-COFF executable"; return; } for (const auto &exp : coffObj->export_directories()) { StringRef dllName, symbolName; uint32_t exportRVA; checkError(exp.getDllName(dllName)); checkError(exp.getSymbolName(symbolName)); checkError(exp.getExportRVA(exportRVA)); if (symbolName.empty()) continue; bool code = isRVACode(coffObj.get(), exportRVA, this); Symbol *s = make(); s->dllName = dllName; s->symbolName = symbolName; s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA; s->nameType = ImportNameType::IMPORT_NAME; if (coffObj->getMachine() == I386) { s->symbolName = symbolName = saver().save("_" + symbolName); s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX; } StringRef impName = saver().save("__imp_" + symbolName); symtab.addLazyDLLSymbol(this, s, impName); if (code) symtab.addLazyDLLSymbol(this, s, symbolName); } } MachineTypes DLLFile::getMachineType() const { if (coffObj) return static_cast(coffObj->getMachine()); return IMAGE_FILE_MACHINE_UNKNOWN; } void DLLFile::makeImport(DLLFile::Symbol *s) { if (!seen.insert(s->symbolName).second) return; size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs size_t size = sizeof(coff_import_header) + impSize; char *buf = bAlloc().Allocate(size); memset(buf, 0, size); char *p = buf; auto *imp = reinterpret_cast(p); p += sizeof(*imp); imp->Sig2 = 0xFFFF; imp->Machine = coffObj->getMachine(); imp->SizeOfData = impSize; imp->OrdinalHint = 0; // Only linking by name imp->TypeInfo = (s->nameType << 2) | s->importType; // Write symbol name and DLL name. memcpy(p, s->symbolName.data(), s->symbolName.size()); p += s->symbolName.size() + 1; memcpy(p, s->dllName.data(), s->dllName.size()); MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName); ImportFile *impFile = make(symtab.ctx, mbref); symtab.ctx.driver.addFile(impFile); }