//===--- MacroExpander.cpp - Lex from a macro expansion -------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MacroExpander interface. // //===----------------------------------------------------------------------===// #include "clang/Lex/MacroExpander.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/SmallVector.h" using namespace clang; //===----------------------------------------------------------------------===// // MacroArgs Implementation //===----------------------------------------------------------------------===// /// MacroArgs ctor function - This destroys the vector passed in. MacroArgs *MacroArgs::create(const MacroInfo *MI, const Token *UnexpArgTokens, unsigned NumToks, bool VarargsElided) { assert(MI->isFunctionLike() && "Can't have args for an object-like macro!"); // Allocate memory for the MacroArgs object with the lexer tokens at the end. MacroArgs *Result = (MacroArgs*)malloc(sizeof(MacroArgs) + NumToks*sizeof(Token)); // Construct the macroargs object. new (Result) MacroArgs(NumToks, VarargsElided); // Copy the actual unexpanded tokens to immediately after the result ptr. if (NumToks) memcpy(const_cast(Result->getUnexpArgument(0)), UnexpArgTokens, NumToks*sizeof(Token)); return Result; } /// destroy - Destroy and deallocate the memory for this object. /// void MacroArgs::destroy() { // Run the dtor to deallocate the vectors. this->~MacroArgs(); // Release the memory for the object. free(this); } /// getArgLength - Given a pointer to an expanded or unexpanded argument, /// return the number of tokens, not counting the EOF, that make up the /// argument. unsigned MacroArgs::getArgLength(const Token *ArgPtr) { unsigned NumArgTokens = 0; for (; ArgPtr->getKind() != tok::eof; ++ArgPtr) ++NumArgTokens; return NumArgTokens; } /// getUnexpArgument - Return the unexpanded tokens for the specified formal. /// const Token *MacroArgs::getUnexpArgument(unsigned Arg) const { // The unexpanded argument tokens start immediately after the MacroArgs object // in memory. const Token *Start = (const Token *)(this+1); const Token *Result = Start; // Scan to find Arg. for (; Arg; ++Result) { assert(Result < Start+NumUnexpArgTokens && "Invalid arg #"); if (Result->getKind() == tok::eof) --Arg; } return Result; } /// ArgNeedsPreexpansion - If we can prove that the argument won't be affected /// by pre-expansion, return false. Otherwise, conservatively return true. bool MacroArgs::ArgNeedsPreexpansion(const Token *ArgTok) const { // If there are no identifiers in the argument list, or if the identifiers are // known to not be macros, pre-expansion won't modify it. for (; ArgTok->getKind() != tok::eof; ++ArgTok) if (IdentifierInfo *II = ArgTok->getIdentifierInfo()) { if (II->getMacroInfo() && II->getMacroInfo()->isEnabled()) // Return true even though the macro could be a function-like macro // without a following '(' token. return true; } return false; } /// getPreExpArgument - Return the pre-expanded form of the specified /// argument. const std::vector & MacroArgs::getPreExpArgument(unsigned Arg, Preprocessor &PP) { assert(Arg < NumUnexpArgTokens && "Invalid argument number!"); // If we have already computed this, return it. if (PreExpArgTokens.empty()) PreExpArgTokens.resize(NumUnexpArgTokens); std::vector &Result = PreExpArgTokens[Arg]; if (!Result.empty()) return Result; const Token *AT = getUnexpArgument(Arg); unsigned NumToks = getArgLength(AT)+1; // Include the EOF. // Otherwise, we have to pre-expand this argument, populating Result. To do // this, we set up a fake MacroExpander to lex from the unexpanded argument // list. With this installed, we lex expanded tokens until we hit the EOF // token at the end of the unexp list. PP.EnterTokenStream(AT, NumToks); // Lex all of the macro-expanded tokens into Result. do { Result.push_back(Token()); PP.Lex(Result.back()); } while (Result.back().getKind() != tok::eof); // Pop the token stream off the top of the stack. We know that the internal // pointer inside of it is to the "end" of the token stream, but the stack // will not otherwise be popped until the next token is lexed. The problem is // that the token may be lexed sometime after the vector of tokens itself is // destroyed, which would be badness. PP.RemoveTopOfLexerStack(); return Result; } /// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of /// tokens into the literal string token that should be produced by the C # /// preprocessor operator. /// static Token StringifyArgument(const Token *ArgToks, Preprocessor &PP, bool Charify = false) { Token Tok; Tok.startToken(); Tok.setKind(tok::string_literal); const Token *ArgTokStart = ArgToks; // Stringify all the tokens. std::string Result = "\""; // FIXME: Optimize this loop to not use std::strings. bool isFirst = true; for (; ArgToks->getKind() != tok::eof; ++ArgToks) { const Token &Tok = *ArgToks; if (!isFirst && (Tok.hasLeadingSpace() || Tok.isAtStartOfLine())) Result += ' '; isFirst = false; // If this is a string or character constant, escape the token as specified // by 6.10.3.2p2. if (Tok.getKind() == tok::string_literal || // "foo" Tok.getKind() == tok::wide_string_literal || // L"foo" Tok.getKind() == tok::char_constant) { // 'x' and L'x'. Result += Lexer::Stringify(PP.getSpelling(Tok)); } else { // Otherwise, just append the token. Result += PP.getSpelling(Tok); } } // If the last character of the string is a \, and if it isn't escaped, this // is an invalid string literal, diagnose it as specified in C99. if (Result[Result.size()-1] == '\\') { // Count the number of consequtive \ characters. If even, then they are // just escaped backslashes, otherwise it's an error. unsigned FirstNonSlash = Result.size()-2; // Guaranteed to find the starting " if nothing else. while (Result[FirstNonSlash] == '\\') --FirstNonSlash; if ((Result.size()-1-FirstNonSlash) & 1) { // Diagnose errors for things like: #define F(X) #X / F(\) PP.Diag(ArgToks[-1], diag::pp_invalid_string_literal); Result.erase(Result.end()-1); // remove one of the \'s. } } Result += '"'; // If this is the charify operation and the result is not a legal character // constant, diagnose it. if (Charify) { // First step, turn double quotes into single quotes: Result[0] = '\''; Result[Result.size()-1] = '\''; // Check for bogus character. bool isBad = false; if (Result.size() == 3) { isBad = Result[1] == '\''; // ''' is not legal. '\' already fixed above. } else { isBad = (Result.size() != 4 || Result[1] != '\\'); // Not '\x' } if (isBad) { PP.Diag(ArgTokStart[0], diag::err_invalid_character_to_charify); Result = "' '"; // Use something arbitrary, but legal. } } Tok.setLength(Result.size()); Tok.setLocation(PP.CreateString(&Result[0], Result.size())); return Tok; } /// getStringifiedArgument - Compute, cache, and return the specified argument /// that has been 'stringified' as required by the # operator. const Token &MacroArgs::getStringifiedArgument(unsigned ArgNo, Preprocessor &PP) { assert(ArgNo < NumUnexpArgTokens && "Invalid argument number!"); if (StringifiedArgs.empty()) { StringifiedArgs.resize(getNumArguments()); memset(&StringifiedArgs[0], 0, sizeof(StringifiedArgs[0])*getNumArguments()); } if (StringifiedArgs[ArgNo].getKind() != tok::string_literal) StringifiedArgs[ArgNo] = StringifyArgument(getUnexpArgument(ArgNo), PP); return StringifiedArgs[ArgNo]; } //===----------------------------------------------------------------------===// // MacroExpander Implementation //===----------------------------------------------------------------------===// /// Create a macro expander for the specified macro with the specified actual /// arguments. Note that this ctor takes ownership of the ActualArgs pointer. void MacroExpander::Init(Token &Tok, MacroArgs *Actuals) { // If the client is reusing a macro expander, make sure to free any memory // associated with it. destroy(); Macro = Tok.getIdentifierInfo()->getMacroInfo(); ActualArgs = Actuals; CurToken = 0; InstantiateLoc = Tok.getLocation(); AtStartOfLine = Tok.isAtStartOfLine(); HasLeadingSpace = Tok.hasLeadingSpace(); MacroTokens = &*Macro->tokens_begin(); OwnsMacroTokens = false; NumMacroTokens = Macro->tokens_end()-Macro->tokens_begin(); // If this is a function-like macro, expand the arguments and change // MacroTokens to point to the expanded tokens. if (Macro->isFunctionLike() && Macro->getNumArgs()) ExpandFunctionArguments(); // Mark the macro as currently disabled, so that it is not recursively // expanded. The macro must be disabled only after argument pre-expansion of // function-like macro arguments occurs. Macro->DisableMacro(); } /// Create a macro expander for the specified token stream. This does not /// take ownership of the specified token vector. void MacroExpander::Init(const Token *TokArray, unsigned NumToks) { // If the client is reusing a macro expander, make sure to free any memory // associated with it. destroy(); Macro = 0; ActualArgs = 0; MacroTokens = TokArray; OwnsMacroTokens = false; NumMacroTokens = NumToks; CurToken = 0; InstantiateLoc = SourceLocation(); AtStartOfLine = false; HasLeadingSpace = false; // Set HasLeadingSpace/AtStartOfLine so that the first token will be // returned unmodified. if (NumToks != 0) { AtStartOfLine = TokArray[0].isAtStartOfLine(); HasLeadingSpace = TokArray[0].hasLeadingSpace(); } } void MacroExpander::destroy() { // If this was a function-like macro that actually uses its arguments, delete // the expanded tokens. if (OwnsMacroTokens) { delete [] MacroTokens; MacroTokens = 0; } // MacroExpander owns its formal arguments. if (ActualArgs) ActualArgs->destroy(); } /// Expand the arguments of a function-like macro so that we can quickly /// return preexpanded tokens from MacroTokens. void MacroExpander::ExpandFunctionArguments() { llvm::SmallVector ResultToks; // Loop through the MacroTokens tokens, expanding them into ResultToks. Keep // track of whether we change anything. If not, no need to keep them. If so, // we install the newly expanded sequence as MacroTokens. bool MadeChange = false; // NextTokGetsSpace - When this is true, the next token appended to the // output list will get a leading space, regardless of whether it had one to // begin with or not. This is used for placemarker support. bool NextTokGetsSpace = false; for (unsigned i = 0, e = NumMacroTokens; i != e; ++i) { // If we found the stringify operator, get the argument stringified. The // preprocessor already verified that the following token is a macro name // when the #define was parsed. const Token &CurTok = MacroTokens[i]; if (CurTok.getKind() == tok::hash || CurTok.getKind() == tok::hashat) { int ArgNo = Macro->getArgumentNum(MacroTokens[i+1].getIdentifierInfo()); assert(ArgNo != -1 && "Token following # is not an argument?"); Token Res; if (CurTok.getKind() == tok::hash) // Stringify Res = ActualArgs->getStringifiedArgument(ArgNo, PP); else { // 'charify': don't bother caching these. Res = StringifyArgument(ActualArgs->getUnexpArgument(ArgNo), PP, true); } // The stringified/charified string leading space flag gets set to match // the #/#@ operator. if (CurTok.hasLeadingSpace() || NextTokGetsSpace) Res.setFlag(Token::LeadingSpace); ResultToks.push_back(Res); MadeChange = true; ++i; // Skip arg name. NextTokGetsSpace = false; continue; } // Otherwise, if this is not an argument token, just add the token to the // output buffer. IdentifierInfo *II = CurTok.getIdentifierInfo(); int ArgNo = II ? Macro->getArgumentNum(II) : -1; if (ArgNo == -1) { // This isn't an argument, just add it. ResultToks.push_back(CurTok); if (NextTokGetsSpace) { ResultToks.back().setFlag(Token::LeadingSpace); NextTokGetsSpace = false; } continue; } // An argument is expanded somehow, the result is different than the // input. MadeChange = true; // Otherwise, this is a use of the argument. Find out if there is a paste // (##) operator before or after the argument. bool PasteBefore = !ResultToks.empty() && ResultToks.back().getKind() == tok::hashhash; bool PasteAfter = i+1 != e && MacroTokens[i+1].getKind() == tok::hashhash; // If it is not the LHS/RHS of a ## operator, we must pre-expand the // argument and substitute the expanded tokens into the result. This is // C99 6.10.3.1p1. if (!PasteBefore && !PasteAfter) { const Token *ResultArgToks; // Only preexpand the argument if it could possibly need it. This // avoids some work in common cases. const Token *ArgTok = ActualArgs->getUnexpArgument(ArgNo); if (ActualArgs->ArgNeedsPreexpansion(ArgTok)) ResultArgToks = &ActualArgs->getPreExpArgument(ArgNo, PP)[0]; else ResultArgToks = ArgTok; // Use non-preexpanded tokens. // If the arg token expanded into anything, append it. if (ResultArgToks->getKind() != tok::eof) { unsigned FirstResult = ResultToks.size(); unsigned NumToks = MacroArgs::getArgLength(ResultArgToks); ResultToks.append(ResultArgToks, ResultArgToks+NumToks); // If any tokens were substituted from the argument, the whitespace // before the first token should match the whitespace of the arg // identifier. ResultToks[FirstResult].setFlagValue(Token::LeadingSpace, CurTok.hasLeadingSpace() || NextTokGetsSpace); NextTokGetsSpace = false; } else { // If this is an empty argument, and if there was whitespace before the // formal token, make sure the next token gets whitespace before it. NextTokGetsSpace = CurTok.hasLeadingSpace(); } continue; } // Okay, we have a token that is either the LHS or RHS of a paste (##) // argument. It gets substituted as its non-pre-expanded tokens. const Token *ArgToks = ActualArgs->getUnexpArgument(ArgNo); unsigned NumToks = MacroArgs::getArgLength(ArgToks); if (NumToks) { // Not an empty argument? ResultToks.append(ArgToks, ArgToks+NumToks); // If the next token was supposed to get leading whitespace, ensure it has // it now. if (NextTokGetsSpace) { ResultToks[ResultToks.size()-NumToks].setFlag(Token::LeadingSpace); NextTokGetsSpace = false; } continue; } // If an empty argument is on the LHS or RHS of a paste, the standard (C99 // 6.10.3.3p2,3) calls for a bunch of placemarker stuff to occur. We // implement this by eating ## operators when a LHS or RHS expands to // empty. NextTokGetsSpace |= CurTok.hasLeadingSpace(); if (PasteAfter) { // Discard the argument token and skip (don't copy to the expansion // buffer) the paste operator after it. NextTokGetsSpace |= MacroTokens[i+1].hasLeadingSpace(); ++i; continue; } // If this is on the RHS of a paste operator, we've already copied the // paste operator to the ResultToks list. Remove it. assert(PasteBefore && ResultToks.back().getKind() == tok::hashhash); NextTokGetsSpace |= ResultToks.back().hasLeadingSpace(); ResultToks.pop_back(); // If this is the __VA_ARGS__ token, and if the argument wasn't provided, // and if the macro had at least one real argument, and if the token before // the ## was a comma, remove the comma. if ((unsigned)ArgNo == Macro->getNumArgs()-1 && // is __VA_ARGS__ ActualArgs->isVarargsElidedUse() && // Argument elided. !ResultToks.empty() && ResultToks.back().getKind() == tok::comma) { // Never add a space, even if the comma, ##, or arg had a space. NextTokGetsSpace = false; ResultToks.pop_back(); } continue; } // If anything changed, install this as the new MacroTokens list. if (MadeChange) { // This is deleted in the dtor. NumMacroTokens = ResultToks.size(); Token *Res = new Token[ResultToks.size()]; if (NumMacroTokens) memcpy(Res, &ResultToks[0], NumMacroTokens*sizeof(Token)); MacroTokens = Res; OwnsMacroTokens = true; } } /// Lex - Lex and return a token from this macro stream. /// void MacroExpander::Lex(Token &Tok) { // Lexing off the end of the macro, pop this macro off the expansion stack. if (isAtEnd()) { // If this is a macro (not a token stream), mark the macro enabled now // that it is no longer being expanded. if (Macro) Macro->EnableMacro(); // Pop this context off the preprocessors lexer stack and get the next // token. This will delete "this" so remember the PP instance var. Preprocessor &PPCache = PP; if (PP.HandleEndOfMacro(Tok)) return; // HandleEndOfMacro may not return a token. If it doesn't, lex whatever is // next. return PPCache.Lex(Tok); } // If this is the first token of the expanded result, we inherit spacing // properties later. bool isFirstToken = CurToken == 0; // Get the next token to return. Tok = MacroTokens[CurToken++]; // If this token is followed by a token paste (##) operator, paste the tokens! if (!isAtEnd() && MacroTokens[CurToken].getKind() == tok::hashhash) PasteTokens(Tok); // The token's current location indicate where the token was lexed from. We // need this information to compute the spelling of the token, but any // diagnostics for the expanded token should appear as if they came from // InstantiationLoc. Pull this information together into a new SourceLocation // that captures all of this. if (InstantiateLoc.isValid()) { // Don't do this for token streams. SourceManager &SrcMgr = PP.getSourceManager(); Tok.setLocation(SrcMgr.getInstantiationLoc(Tok.getLocation(), InstantiateLoc)); } // If this is the first token, set the lexical properties of the token to // match the lexical properties of the macro identifier. if (isFirstToken) { Tok.setFlagValue(Token::StartOfLine , AtStartOfLine); Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); } // Handle recursive expansion! if (Tok.getIdentifierInfo()) return PP.HandleIdentifier(Tok); // Otherwise, return a normal token. } /// PasteTokens - Tok is the LHS of a ## operator, and CurToken is the ## /// operator. Read the ## and RHS, and paste the LHS/RHS together. If there /// are is another ## after it, chomp it iteratively. Return the result as Tok. void MacroExpander::PasteTokens(Token &Tok) { llvm::SmallVector Buffer; do { // Consume the ## operator. SourceLocation PasteOpLoc = MacroTokens[CurToken].getLocation(); ++CurToken; assert(!isAtEnd() && "No token on the RHS of a paste operator!"); // Get the RHS token. const Token &RHS = MacroTokens[CurToken]; bool isInvalid = false; // Allocate space for the result token. This is guaranteed to be enough for // the two tokens and a null terminator. Buffer.resize(Tok.getLength() + RHS.getLength() + 1); // Get the spelling of the LHS token in Buffer. const char *BufPtr = &Buffer[0]; unsigned LHSLen = PP.getSpelling(Tok, BufPtr); if (BufPtr != &Buffer[0]) // Really, we want the chars in Buffer! memcpy(&Buffer[0], BufPtr, LHSLen); BufPtr = &Buffer[LHSLen]; unsigned RHSLen = PP.getSpelling(RHS, BufPtr); if (BufPtr != &Buffer[LHSLen]) // Really, we want the chars in Buffer! memcpy(&Buffer[LHSLen], BufPtr, RHSLen); // Add null terminator. Buffer[LHSLen+RHSLen] = '\0'; // Trim excess space. Buffer.resize(LHSLen+RHSLen+1); // Plop the pasted result (including the trailing newline and null) into a // scratch buffer where we can lex it. SourceLocation ResultTokLoc = PP.CreateString(&Buffer[0], Buffer.size()); // Lex the resultant pasted token into Result. Token Result; // Avoid testing /*, as the lexer would think it is the start of a comment // and emit an error that it is unterminated. if (Tok.getKind() == tok::slash && RHS.getKind() == tok::star) { isInvalid = true; } else if (Tok.getKind() == tok::identifier && RHS.getKind() == tok::identifier) { // Common paste case: identifier+identifier = identifier. Avoid creating // a lexer and other overhead. PP.IncrementPasteCounter(true); Result.startToken(); Result.setKind(tok::identifier); Result.setLocation(ResultTokLoc); Result.setLength(LHSLen+RHSLen); } else { PP.IncrementPasteCounter(false); // Make a lexer to lex this string from. SourceManager &SourceMgr = PP.getSourceManager(); const char *ResultStrData = SourceMgr.getCharacterData(ResultTokLoc); // Make a lexer object so that we lex and expand the paste result. Lexer *TL = new Lexer(ResultTokLoc, PP, ResultStrData, ResultStrData+LHSLen+RHSLen /*don't include null*/); // Lex a token in raw mode. This way it won't look up identifiers // automatically, lexing off the end will return an eof token, and // warnings are disabled. This returns true if the result token is the // entire buffer. bool IsComplete = TL->LexRawToken(Result); // If we got an EOF token, we didn't form even ONE token. For example, we // did "/ ## /" to get "//". IsComplete &= Result.getKind() != tok::eof; isInvalid = !IsComplete; // We're now done with the temporary lexer. delete TL; } // If pasting the two tokens didn't form a full new token, this is an error. // This occurs with "x ## +" and other stuff. Return with Tok unmodified // and with RHS as the next token to lex. if (isInvalid) { // If not in assembler language mode. PP.Diag(PasteOpLoc, diag::err_pp_bad_paste, std::string(Buffer.begin(), Buffer.end()-1)); return; } // Turn ## into 'other' to avoid # ## # from looking like a paste operator. if (Result.getKind() == tok::hashhash) Result.setKind(tok::unknown); // FIXME: Turn __VARRGS__ into "not a token"? // Transfer properties of the LHS over the the Result. Result.setFlagValue(Token::StartOfLine , Tok.isAtStartOfLine()); Result.setFlagValue(Token::LeadingSpace, Tok.hasLeadingSpace()); // Finally, replace LHS with the result, consume the RHS, and iterate. ++CurToken; Tok = Result; } while (!isAtEnd() && MacroTokens[CurToken].getKind() == tok::hashhash); // Now that we got the result token, it will be subject to expansion. Since // token pasting re-lexes the result token in raw mode, identifier information // isn't looked up. As such, if the result is an identifier, look up id info. if (Tok.getKind() == tok::identifier) { // Look up the identifier info for the token. We disabled identifier lookup // by saying we're skipping contents, so we need to do this manually. Tok.setIdentifierInfo(PP.LookUpIdentifierInfo(Tok)); } } /// isNextTokenLParen - If the next token lexed will pop this macro off the /// expansion stack, return 2. If the next unexpanded token is a '(', return /// 1, otherwise return 0. unsigned MacroExpander::isNextTokenLParen() const { // Out of tokens? if (isAtEnd()) return 2; return MacroTokens[CurToken].getKind() == tok::l_paren; }