//===--- DeclBase.cpp - Declaration AST Node Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Decl and DeclContext classes. // //===----------------------------------------------------------------------===// #include "clang/AST/DeclBase.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Type.h" #include "llvm/ADT/DenseMap.h" #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Statistics //===----------------------------------------------------------------------===// #define DECL(Derived, Base) static int n##Derived##s = 0; #include "clang/AST/DeclNodes.def" static bool StatSwitch = false; // This keeps track of all decl attributes. Since so few decls have attrs, we // keep them in a hash map instead of wasting space in the Decl class. typedef llvm::DenseMap DeclAttrMapTy; static DeclAttrMapTy *DeclAttrs = 0; const char *Decl::getDeclKindName() const { switch (DeclKind) { default: assert(0 && "Declaration not in DeclNodes.def!"); #define DECL(Derived, Base) case Derived: return #Derived; #include "clang/AST/DeclNodes.def" } } const char *DeclContext::getDeclKindName() const { switch (DeclKind) { default: assert(0 && "Declaration context not in DeclNodes.def!"); #define DECL(Derived, Base) case Decl::Derived: return #Derived; #include "clang/AST/DeclNodes.def" } } bool Decl::CollectingStats(bool Enable) { if (Enable) StatSwitch = true; return StatSwitch; } void Decl::PrintStats() { fprintf(stderr, "*** Decl Stats:\n"); int totalDecls = 0; #define DECL(Derived, Base) totalDecls += n##Derived##s; #include "clang/AST/DeclNodes.def" fprintf(stderr, " %d decls total.\n", totalDecls); int totalBytes = 0; #define DECL(Derived, Base) \ if (n##Derived##s > 0) { \ totalBytes += (int)(n##Derived##s * sizeof(Derived##Decl)); \ fprintf(stderr, " %d " #Derived " decls, %d each (%d bytes)\n", \ n##Derived##s, (int)sizeof(Derived##Decl), \ (int)(n##Derived##s * sizeof(Derived##Decl))); \ } #include "clang/AST/DeclNodes.def" fprintf(stderr, "Total bytes = %d\n", totalBytes); } void Decl::addDeclKind(Kind k) { switch (k) { default: assert(0 && "Declaration not in DeclNodes.def!"); #define DECL(Derived, Base) case Derived: ++n##Derived##s; break; #include "clang/AST/DeclNodes.def" } } //===----------------------------------------------------------------------===// // Decl Implementation //===----------------------------------------------------------------------===// void Decl::setDeclContext(DeclContext *DC) { if (isOutOfSemaDC()) delete getMultipleDC(); DeclCtx = reinterpret_cast(DC); } void Decl::setLexicalDeclContext(DeclContext *DC) { if (DC == getLexicalDeclContext()) return; if (isInSemaDC()) { MultipleDC *MDC = new MultipleDC(); MDC->SemanticDC = getDeclContext(); MDC->LexicalDC = DC; DeclCtx = reinterpret_cast(MDC) | 0x1; } else { getMultipleDC()->LexicalDC = DC; } } // Out-of-line virtual method providing a home for Decl. Decl::~Decl() { if (isOutOfSemaDC()) delete getMultipleDC(); if (!HasAttrs) return; DeclAttrMapTy::iterator it = DeclAttrs->find(this); assert(it != DeclAttrs->end() && "No attrs found but HasAttrs is true!"); // release attributes. delete it->second; invalidateAttrs(); } void Decl::addAttr(Attr *NewAttr) { if (!DeclAttrs) DeclAttrs = new DeclAttrMapTy(); Attr *&ExistingAttr = (*DeclAttrs)[this]; NewAttr->setNext(ExistingAttr); ExistingAttr = NewAttr; HasAttrs = true; } void Decl::invalidateAttrs() { if (!HasAttrs) return; HasAttrs = false; (*DeclAttrs)[this] = 0; DeclAttrs->erase(this); if (DeclAttrs->empty()) { delete DeclAttrs; DeclAttrs = 0; } } const Attr *Decl::getAttrs() const { if (!HasAttrs) return 0; return (*DeclAttrs)[this]; } void Decl::swapAttrs(Decl *RHS) { bool HasLHSAttr = this->HasAttrs; bool HasRHSAttr = RHS->HasAttrs; // Usually, neither decl has attrs, nothing to do. if (!HasLHSAttr && !HasRHSAttr) return; // If 'this' has no attrs, swap the other way. if (!HasLHSAttr) return RHS->swapAttrs(this); // Handle the case when both decls have attrs. if (HasRHSAttr) { std::swap((*DeclAttrs)[this], (*DeclAttrs)[RHS]); return; } // Otherwise, LHS has an attr and RHS doesn't. (*DeclAttrs)[RHS] = (*DeclAttrs)[this]; (*DeclAttrs).erase(this); this->HasAttrs = false; RHS->HasAttrs = true; } void Decl::Destroy(ASTContext& C) { #if 0 // FIXME: Once ownership is fully understood, we can enable this code if (DeclContext *DC = dyn_cast(this)) DC->decls_begin()->Destroy(C); // Observe the unrolled recursion. By setting N->NextDeclInScope = 0x0 // within the loop, only the Destroy method for the first Decl // will deallocate all of the Decls in a chain. Decl* N = NextDeclInScope; while (N) { Decl* Tmp = N->NextDeclInScope; N->NextDeclInScope = 0; N->Destroy(C); N = Tmp; } this->~Decl(); C.Deallocate((void *)this); #endif } Decl *Decl::castFromDeclContext (const DeclContext *D) { Decl::Kind DK = D->getDeclKind(); switch(DK) { #define DECL_CONTEXT(Name) \ case Decl::Name: \ return static_cast(const_cast(D)); #define DECL_CONTEXT_BASE(Name) #include "clang/AST/DeclNodes.def" default: #define DECL_CONTEXT_BASE(Name) \ if (DK >= Decl::Name##First && DK <= Decl::Name##Last) \ return static_cast(const_cast(D)); #include "clang/AST/DeclNodes.def" assert(false && "a decl that inherits DeclContext isn't handled"); return 0; } } DeclContext *Decl::castToDeclContext(const Decl *D) { Decl::Kind DK = D->getKind(); switch(DK) { #define DECL_CONTEXT(Name) \ case Decl::Name: \ return static_cast(const_cast(D)); #define DECL_CONTEXT_BASE(Name) #include "clang/AST/DeclNodes.def" default: #define DECL_CONTEXT_BASE(Name) \ if (DK >= Decl::Name##First && DK <= Decl::Name##Last) \ return static_cast(const_cast(D)); #include "clang/AST/DeclNodes.def" assert(false && "a decl that inherits DeclContext isn't handled"); return 0; } } //===----------------------------------------------------------------------===// // DeclContext Implementation //===----------------------------------------------------------------------===// bool DeclContext::classof(const Decl *D) { switch (D->getKind()) { #define DECL_CONTEXT(Name) case Decl::Name: #define DECL_CONTEXT_BASE(Name) #include "clang/AST/DeclNodes.def" return true; default: #define DECL_CONTEXT_BASE(Name) \ if (D->getKind() >= Decl::Name##First && \ D->getKind() <= Decl::Name##Last) \ return true; #include "clang/AST/DeclNodes.def" return false; } } // FIXME: We really want to use a DenseSet here to eliminate the // redundant storage of the declaration names, but (1) it doesn't give // us the ability to search based on DeclarationName, (2) we really // need something more like a DenseMultiSet, and (3) it's // implemented in terms of DenseMap anyway. However, this data // structure is really space-inefficient, so we'll have to do // something. typedef llvm::DenseMap > StoredDeclsMap; DeclContext::~DeclContext() { unsigned Size = LookupPtr.getInt(); if (Size == LookupIsMap) delete static_cast(LookupPtr.getPointer()); else delete [] static_cast(LookupPtr.getPointer()); } void DeclContext::DestroyDecls(ASTContext &C) { for (decl_iterator D = decls_begin(); D != decls_end(); ) (*D++)->Destroy(C); } bool DeclContext::isTransparentContext() const { if (DeclKind == Decl::Enum) return true; // FIXME: Check for C++0x scoped enums else if (DeclKind == Decl::LinkageSpec) return true; else if (DeclKind == Decl::Record || DeclKind == Decl::CXXRecord) return cast(this)->isAnonymousStructOrUnion(); else if (DeclKind == Decl::Namespace) return false; // FIXME: Check for C++0x inline namespaces return false; } DeclContext *DeclContext::getPrimaryContext() { switch (DeclKind) { case Decl::TranslationUnit: case Decl::LinkageSpec: case Decl::Block: // There is only one DeclContext for these entities. return this; case Decl::Namespace: // The original namespace is our primary context. return static_cast(this)->getOriginalNamespace(); case Decl::ObjCMethod: return this; case Decl::ObjCInterface: case Decl::ObjCProtocol: case Decl::ObjCCategory: // FIXME: Can Objective-C interfaces be forward-declared? return this; case Decl::ObjCImplementation: case Decl::ObjCCategoryImpl: return this; default: if (DeclKind >= Decl::TagFirst && DeclKind <= Decl::TagLast) { // If this is a tag type that has a definition or is currently // being defined, that definition is our primary context. if (TagType *TagT = cast_or_null(cast(this)->TypeForDecl)) if (TagT->isBeingDefined() || (TagT->getDecl() && TagT->getDecl()->isDefinition())) return TagT->getDecl(); return this; } assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast && "Unknown DeclContext kind"); return this; } } DeclContext *DeclContext::getNextContext() { switch (DeclKind) { case Decl::Namespace: // Return the next namespace return static_cast(this)->getNextNamespace(); default: return 0; } } void DeclContext::addDecl(Decl *D) { assert(D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context"); assert(!D->NextDeclInScope && D != LastDecl && "Decl already inserted into a DeclContext"); if (FirstDecl) { LastDecl->NextDeclInScope = D; LastDecl = D; } else { FirstDecl = LastDecl = D; } if (NamedDecl *ND = dyn_cast(D)) ND->getDeclContext()->makeDeclVisibleInContext(ND); } /// buildLookup - Build the lookup data structure with all of the /// declarations in DCtx (and any other contexts linked to it or /// transparent contexts nested within it). void DeclContext::buildLookup(DeclContext *DCtx) { for (; DCtx; DCtx = DCtx->getNextContext()) { for (decl_iterator D = DCtx->decls_begin(), DEnd = DCtx->decls_end(); D != DEnd; ++D) { // Insert this declaration into the lookup structure if (NamedDecl *ND = dyn_cast(*D)) makeDeclVisibleInContextImpl(ND); // If this declaration is itself a transparent declaration context, // add its members (recursively). if (DeclContext *InnerCtx = dyn_cast(*D)) if (InnerCtx->isTransparentContext()) buildLookup(InnerCtx->getPrimaryContext()); } } } DeclContext::lookup_result DeclContext::lookup(DeclarationName Name) { DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) return PrimaryContext->lookup(Name); /// If there is no lookup data structure, build one now by walking /// all of the linked DeclContexts (in declaration order!) and /// inserting their values. if (LookupPtr.getPointer() == 0) buildLookup(this); if (isLookupMap()) { StoredDeclsMap *Map = static_cast(LookupPtr.getPointer()); StoredDeclsMap::iterator Pos = Map->find(Name); if (Pos == Map->end()) return lookup_result(0, 0); return lookup_result(&Pos->second.front(), &Pos->second.front() + Pos->second.size()); } // We have a small array. Look into it. unsigned Size = LookupPtr.getInt(); NamedDecl **Array = static_cast(LookupPtr.getPointer()); for (unsigned Idx = 0; Idx != Size; ++Idx) if (Array[Idx]->getDeclName() == Name) { unsigned Last = Idx + 1; while (Last != Size && Array[Last]->getDeclName() == Name) ++Last; return lookup_result(&Array[Idx], &Array[Last]); } return lookup_result(0, 0); } DeclContext::lookup_const_result DeclContext::lookup(DeclarationName Name) const { return const_cast(this)->lookup(Name); } const DeclContext *DeclContext::getLookupContext() const { const DeclContext *Ctx = this; // Skip through transparent contexts. while (Ctx->isTransparentContext()) Ctx = Ctx->getParent(); return Ctx; } void DeclContext::makeDeclVisibleInContext(NamedDecl *D) { // FIXME: This feels like a hack. Should DeclarationName support // template-ids, or is there a better way to keep specializations // from being visible? if (isa(D)) return; DeclContext *PrimaryContext = getPrimaryContext(); if (PrimaryContext != this) { PrimaryContext->makeDeclVisibleInContext(D); return; } // If we already have a lookup data structure, perform the insertion // into it. Otherwise, be lazy and don't build that structure until // someone asks for it. if (LookupPtr.getPointer()) makeDeclVisibleInContextImpl(D); // If we are a transparent context, insert into our parent context, // too. This operation is recursive. if (isTransparentContext()) getParent()->makeDeclVisibleInContext(D); } void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D) { // Skip unnamed declarations. if (!D->getDeclName()) return; // FIXME: This feels like a hack. Should DeclarationName support // template-ids, or is there a better way to keep specializations // from being visible? if (isa(D)) return; bool MayBeRedeclaration = true; if (!isLookupMap()) { unsigned Size = LookupPtr.getInt(); // The lookup data is stored as an array. Search through the array // to find the insertion location. NamedDecl **Array; if (Size == 0) { Array = new NamedDecl*[LookupIsMap - 1]; LookupPtr.setPointer(Array); } else { Array = static_cast(LookupPtr.getPointer()); } // We always keep declarations of the same name next to each other // in the array, so that it is easy to return multiple results // from lookup(). unsigned FirstMatch; for (FirstMatch = 0; FirstMatch != Size; ++FirstMatch) if (Array[FirstMatch]->getDeclName() == D->getDeclName()) break; unsigned InsertPos = FirstMatch; if (FirstMatch != Size) { // We found another declaration with the same name. First // determine whether this is a redeclaration of an existing // declaration in this scope, in which case we will replace the // existing declaration. unsigned LastMatch = FirstMatch; for (; LastMatch != Size; ++LastMatch) { if (Array[LastMatch]->getDeclName() != D->getDeclName()) break; if (D->declarationReplaces(Array[LastMatch])) { // D is a redeclaration of an existing element in the // array. Replace that element with D. Array[LastMatch] = D; return; } } // [FirstMatch, LastMatch) contains the set of declarations that // have the same name as this declaration. Determine where the // declaration D will be inserted into this range. if (D->getKind() == Decl::UsingDirective || D->getIdentifierNamespace() == Decl::IDNS_Tag) InsertPos = LastMatch; else if (Array[LastMatch-1]->getIdentifierNamespace() == Decl::IDNS_Tag) InsertPos = LastMatch - 1; else InsertPos = LastMatch; } if (Size < LookupIsMap - 1) { // The new declaration will fit in the array. Insert the new // declaration at the position Match in the array. for (unsigned Idx = Size; Idx > InsertPos; --Idx) Array[Idx] = Array[Idx-1]; Array[InsertPos] = D; LookupPtr.setInt(Size + 1); return; } // We've reached capacity in this array. Create a map and copy in // all of the declarations that were stored in the array. StoredDeclsMap *Map = new StoredDeclsMap(16); LookupPtr.setPointer(Map); LookupPtr.setInt(LookupIsMap); for (unsigned Idx = 0; Idx != LookupIsMap - 1; ++Idx) makeDeclVisibleInContextImpl(Array[Idx]); delete [] Array; // Fall through to perform insertion into the map. MayBeRedeclaration = false; } // Insert this declaration into the map. StoredDeclsMap *Map = static_cast(LookupPtr.getPointer()); std::vector &DeclNameEntries = (*Map)[D->getDeclName()]; if (DeclNameEntries.empty()) { DeclNameEntries.push_back(D); return; } // If it is possible that this is a redeclaration, check to see if there is // already a decl for which declarationReplaces returns true. If there is // one, just replace it and return. if (MayBeRedeclaration) { // Most decls only have one entry in their list, special case it. if (DeclNameEntries.size() == 1) { if (D->declarationReplaces(DeclNameEntries[0])) { DeclNameEntries[0] = D; return; } } else { // Determine if this declaration is actually a redeclaration. std::vector::iterator Redecl = std::find_if(DeclNameEntries.begin(), DeclNameEntries.end(), std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces), D)); if (Redecl != DeclNameEntries.end()) { *Redecl = D; return; } } } // Put this declaration into the appropriate slot. if (isa(D) || D->getIdentifierNamespace() == Decl::IDNS_Tag) DeclNameEntries.push_back(D); else if (DeclNameEntries.back()->getIdentifierNamespace() == Decl::IDNS_Tag) { NamedDecl *TagD = DeclNameEntries.back(); DeclNameEntries.back() = D; DeclNameEntries.push_back(TagD); } else DeclNameEntries.push_back(D); } /// Returns iterator range [First, Last) of UsingDirectiveDecls stored within /// this context. DeclContext::udir_iterator_range DeclContext::getUsingDirectives() const { lookup_const_result Result = lookup(UsingDirectiveDecl::getName()); return udir_iterator_range(reinterpret_cast(Result.first), reinterpret_cast(Result.second)); }