//===-- IRForTarget.cpp -------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Expression/IRForTarget.h" #include "llvm/Support/raw_ostream.h" #include "llvm/InstrTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Target/TargetData.h" #include "clang/AST/ASTContext.h" #include "lldb/Core/dwarf.h" #include "lldb/Core/Log.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/StreamString.h" #include "lldb/Expression/ClangExpressionDeclMap.h" #include using namespace llvm; IRForTarget::IRForTarget(const void *pid, lldb_private::ClangExpressionDeclMap *decl_map, const TargetData *target_data) : ModulePass(pid), m_decl_map(decl_map), m_target_data(target_data) { } IRForTarget::~IRForTarget() { } static clang::NamedDecl * DeclForGlobalValue(Module &module, GlobalValue *global_value) { NamedMDNode *named_metadata = module.getNamedMetadata("clang.global.decl.ptrs"); if (!named_metadata) return NULL; unsigned num_nodes = named_metadata->getNumOperands(); unsigned node_index; for (node_index = 0; node_index < num_nodes; ++node_index) { MDNode *metadata_node = named_metadata->getOperand(node_index); if (!metadata_node) return NULL; if (metadata_node->getNumOperands() != 2) return NULL; if (metadata_node->getOperand(0) != global_value) continue; ConstantInt *constant_int = dyn_cast(metadata_node->getOperand(1)); if (!constant_int) return NULL; uintptr_t ptr = constant_int->getZExtValue(); return reinterpret_cast(ptr); } return NULL; } bool IRForTarget::MaybeHandleVariable(Module &M, Value *V, bool Store) { if (GlobalVariable *global_variable = dyn_cast(V)) { clang::NamedDecl *named_decl = DeclForGlobalValue(M, global_variable); std::string name = named_decl->getName().str(); void *qual_type = NULL; clang::ASTContext *ast_context = NULL; if (clang::ValueDecl *value_decl = dyn_cast(named_decl)) { qual_type = value_decl->getType().getAsOpaquePtr(); ast_context = &value_decl->getASTContext(); } else { return false; } const Type *value_type = global_variable->getType(); size_t value_size = m_target_data->getTypeStoreSize(value_type); off_t value_alignment = m_target_data->getPrefTypeAlignment(value_type); if (named_decl && !m_decl_map->AddValueToStruct(V, named_decl, name, qual_type, ast_context, value_size, value_alignment)) return false; } return true; } bool IRForTarget::MaybeHandleCall(Module &M, CallInst *C) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); Function *fun = C->getCalledFunction(); if (fun == NULL) return true; clang::NamedDecl *fun_decl = DeclForGlobalValue(M, fun); if (!fun_decl) { if (log) log->Printf("Function %s wasn't in the metadata", fun->getName().str().c_str()); return false; } uint64_t fun_addr; Value **fun_value_ptr; if (!m_decl_map->GetFunctionInfo(fun_decl, fun_value_ptr, fun_addr)) { if (log) log->Printf("Function %s had no address", fun_decl->getNameAsCString()); return false; } if (log) log->Printf("Found %s at %llx", fun_decl->getNameAsCString(), fun_addr); if (!*fun_value_ptr) { std::vector params; const IntegerType *intptr_ty = Type::getIntNTy(M.getContext(), (M.getPointerSize() == Module::Pointer64) ? 64 : 32); FunctionType *fun_ty = FunctionType::get(intptr_ty, params, true); PointerType *fun_ptr_ty = PointerType::getUnqual(fun_ty); Constant *fun_addr_int = ConstantInt::get(intptr_ty, fun_addr, false); Constant *fun_addr_ptr = ConstantExpr::getIntToPtr(fun_addr_int, fun_ptr_ty); *fun_value_ptr = fun_addr_ptr; } C->setCalledFunction(*fun_value_ptr); return true; } bool IRForTarget::runOnBasicBlock(Module &M, BasicBlock &BB) { ///////////////////////////////////////////////////////////////////////// // Prepare the current basic block for execution in the remote process // BasicBlock::iterator ii; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (LoadInst *load = dyn_cast(&inst)) if (!MaybeHandleVariable(M, load->getPointerOperand(), false)) return false; if (StoreInst *store = dyn_cast(&inst)) if (!MaybeHandleVariable(M, store->getPointerOperand(), true)) return false; if (CallInst *call = dyn_cast(&inst)) if (!MaybeHandleCall(M, call)) return false; } return true; } static std::string PrintValue(Value *V, bool truncate = false) { std::string s; raw_string_ostream rso(s); V->print(rso); rso.flush(); if (truncate) s.resize(s.length() - 1); return s; } static bool isGuardVariableRef(Value *V) { ConstantExpr *C = dyn_cast(V); if (!C || C->getOpcode() != Instruction::BitCast) return false; GlobalVariable *GV = dyn_cast(C->getOperand(0)); if (!GV || !GV->hasName() || !GV->getName().startswith("_ZGV")) return false; return true; } static void TurnGuardLoadIntoZero(Instruction* guard_load, Module &M) { Constant* zero(ConstantInt::get(Type::getInt8Ty(M.getContext()), 0, true)); Value::use_iterator ui; for (ui = guard_load->use_begin(); ui != guard_load->use_end(); ++ui) { if (isa(ui)) { // do nothing for the moment } else { ui->replaceUsesOfWith(guard_load, zero); } } guard_load->eraseFromParent(); } static void ExciseGuardStore(Instruction* guard_store) { guard_store->eraseFromParent(); } bool IRForTarget::removeGuards(Module &M, BasicBlock &BB) { /////////////////////////////////////////////////////// // Eliminate any reference to guard variables found. // BasicBlock::iterator ii; typedef SmallVector InstrList; typedef InstrList::iterator InstrIterator; InstrList guard_loads; InstrList guard_stores; for (ii = BB.begin(); ii != BB.end(); ++ii) { Instruction &inst = *ii; if (LoadInst *load = dyn_cast(&inst)) if (isGuardVariableRef(load->getPointerOperand())) guard_loads.push_back(&inst); if (StoreInst *store = dyn_cast(&inst)) if (isGuardVariableRef(store->getPointerOperand())) guard_stores.push_back(&inst); } InstrIterator iter; for (iter = guard_loads.begin(); iter != guard_loads.end(); ++iter) TurnGuardLoadIntoZero(*iter, M); for (iter = guard_stores.begin(); iter != guard_stores.end(); ++iter) ExciseGuardStore(*iter); return true; } // UnfoldConstant operates on a constant [C] which has just been replaced with a value // [new_value]. We assume that new_value has been properly placed early in the function, // most likely somewhere in front of the first instruction in the entry basic block // [first_entry_instruction]. // // UnfoldConstant reads through the uses of C and replaces C in those uses with new_value. // Where those uses are constants, the function generates new instructions to compute the // result of the new, non-constant expression and places them before first_entry_instruction. // These instructions replace the constant uses, so UnfoldConstant calls itself recursively // for those. static bool UnfoldConstant(Constant *C, Value *new_value, Instruction *first_entry_instruction) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); Value::use_iterator ui; for (ui = C->use_begin(); ui != C->use_end(); ++ui) { User *user = *ui; if (Constant *constant = dyn_cast(user)) { // synthesize a new non-constant equivalent of the constant if (ConstantExpr *constant_expr = dyn_cast(constant)) { switch (constant_expr->getOpcode()) { default: if (log) log->Printf("Unhandled constant expression type: %s", PrintValue(constant_expr).c_str()); return false; case Instruction::BitCast: { // UnaryExpr // OperandList[0] is value Value *s = constant_expr->getOperand(0); if (s == C) s = new_value; BitCastInst *bit_cast(new BitCastInst(s, C->getType(), "", first_entry_instruction)); UnfoldConstant(constant_expr, bit_cast, first_entry_instruction); } break; case Instruction::GetElementPtr: { // GetElementPtrConstantExpr // OperandList[0] is base // OperandList[1]... are indices Value *ptr = constant_expr->getOperand(0); if (ptr == C) ptr = new_value; SmallVector indices; unsigned operand_index; unsigned num_operands = constant_expr->getNumOperands(); for (operand_index = 1; operand_index < num_operands; ++operand_index) { Value *operand = constant_expr->getOperand(operand_index); if (operand == C) operand = new_value; indices.push_back(operand); } GetElementPtrInst *get_element_ptr(GetElementPtrInst::Create(ptr, indices.begin(), indices.end(), "", first_entry_instruction)); UnfoldConstant(constant_expr, get_element_ptr, first_entry_instruction); } break; } } else { if (log) log->Printf("Unhandled constant type: %s", PrintValue(constant).c_str()); return false; } } else { // simple fall-through case for non-constants user->replaceUsesOfWith(C, new_value); } } return true; } bool IRForTarget::replaceVariables(Module &M, Function *F) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); m_decl_map->DoStructLayout(); if (log) log->Printf("Element arrangement:"); uint32_t num_elements; uint32_t element_index; size_t size; off_t alignment; if (!m_decl_map->GetStructInfo (num_elements, size, alignment)) return false; Function::arg_iterator iter(F->getArgumentList().begin()); if (iter == F->getArgumentList().end()) return false; Argument *argument = iter; if (!argument->getName().equals("___clang_arg")) return false; if (log) log->Printf("Arg: %s", PrintValue(argument).c_str()); BasicBlock &entry_block(F->getEntryBlock()); Instruction *first_entry_instruction(entry_block.getFirstNonPHIOrDbg()); if (!first_entry_instruction) return false; LLVMContext &context(M.getContext()); const IntegerType *offset_type(Type::getInt32Ty(context)); if (!offset_type) return false; for (element_index = 0; element_index < num_elements; ++element_index) { const clang::NamedDecl *decl; Value *value; off_t offset; if (!m_decl_map->GetStructElement (decl, value, offset, element_index)) return false; if (log) log->Printf(" %s (%s) placed at %d", decl->getIdentifier()->getNameStart(), PrintValue(value, true).c_str(), offset); ConstantInt *offset_int(ConstantInt::getSigned(offset_type, offset)); GetElementPtrInst *get_element_ptr = GetElementPtrInst::Create(argument, offset_int, "", first_entry_instruction); BitCastInst *bit_cast = new BitCastInst(get_element_ptr, value->getType(), "", first_entry_instruction); if (Constant *constant = dyn_cast(value)) UnfoldConstant(constant, bit_cast, first_entry_instruction); else value->replaceAllUsesWith(bit_cast); } if (log) log->Printf("Total structure [align %d, size %d]", alignment, size); return true; } bool IRForTarget::runOnModule(Module &M) { lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS); Function* function = M.getFunction(StringRef("___clang_expr")); if (!function) { if (log) log->Printf("Couldn't find ___clang_expr() in the module"); return false; } Function::iterator bbi; for (bbi = function->begin(); bbi != function->end(); ++bbi) { if (!runOnBasicBlock(M, *bbi)) return false; if (!removeGuards(M, *bbi)) return false; } // TEMPORARY FOR DEBUGGING M.dump(); if (!replaceVariables(M, function)) return false; if (log) { std::string s; raw_string_ostream oss(s); M.print(oss, NULL); oss.flush(); log->Printf("Module after preparing for execution: \n%s", s.c_str()); } return true; } void IRForTarget::assignPassManager(PMStack &PMS, PassManagerType T) { } PassManagerType IRForTarget::getPotentialPassManagerType() const { return PMT_ModulePassManager; }