//===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "bolt/Profile/BoltAddressTranslation.h" #include "bolt/Core/BinaryFunction.h" #include "llvm/ADT/APInt.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/LEB128.h" #define DEBUG_TYPE "bolt-bat" namespace llvm { namespace bolt { const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat"; void BoltAddressTranslation::writeEntriesForBB(MapTy &Map, const BinaryBasicBlock &BB, uint64_t FuncInputAddress, uint64_t FuncOutputAddress) { const uint64_t BBOutputOffset = BB.getOutputAddressRange().first - FuncOutputAddress; const uint32_t BBInputOffset = BB.getInputOffset(); // Every output BB must track back to an input BB for profile collection // in bolted binaries. If we are missing an offset, it means this block was // created by a pass. We will skip writing any entries for it, and this means // any traffic happening in this block will map to the previous block in the // layout. This covers the case where an input basic block is split into two, // and the second one lacks any offset. if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET) return; LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n"); LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset) << " Val: " << Twine::utohexstr(BBInputOffset) << "\n"); // NB: in `writeEntriesForBB` we use the input address because hashes are // saved early in `saveMetadata` before output addresses are assigned. const BBHashMapTy &BBHashMap = getBBHashMap(FuncInputAddress); (void)BBHashMap; LLVM_DEBUG( dbgs() << formatv(" Hash: {0:x}\n", BBHashMap.getBBHash(BBInputOffset))); LLVM_DEBUG( dbgs() << formatv(" Index: {0}\n", BBHashMap.getBBIndex(BBInputOffset))); // In case of conflicts (same Key mapping to different Vals), the last // update takes precedence. Of course it is not ideal to have conflicts and // those happen when we have an empty BB that either contained only // NOPs or a jump to the next block (successor). Either way, the successor // and this deleted block will both share the same output address (the same // key), and we need to map back. We choose here to privilege the successor by // allowing it to overwrite the previously inserted key in the map. Map[BBOutputOffset] = BBInputOffset << 1; const auto &IOAddressMap = BB.getFunction()->getBinaryContext().getIOAddressMap(); for (const auto &[InputOffset, Sym] : BB.getLocSyms()) { const auto InputAddress = BB.getFunction()->getAddress() + InputOffset; const auto OutputAddress = IOAddressMap.lookup(InputAddress); assert(OutputAddress && "Unknown instruction address"); const auto OutputOffset = *OutputAddress - FuncOutputAddress; // Is this the first instruction in the BB? No need to duplicate the entry. if (OutputOffset == BBOutputOffset) continue; LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: " << Twine::utohexstr(InputOffset) << " (branch)\n"); Map.insert(std::pair(OutputOffset, (InputOffset << 1) | BRANCHENTRY)); } } void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n"); for (auto &BFI : BC.getBinaryFunctions()) { const BinaryFunction &Function = BFI.second; const uint64_t InputAddress = Function.getAddress(); const uint64_t OutputAddress = Function.getOutputAddress(); // We don't need a translation table if the body of the function hasn't // changed if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple())) continue; uint32_t NumSecondaryEntryPoints = 0; Function.forEachEntryPoint([&](uint64_t Offset, const MCSymbol *) { if (!Offset) return true; ++NumSecondaryEntryPoints; SecondaryEntryPointsMap[OutputAddress].push_back(Offset); return true; }); LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n"); LLVM_DEBUG(dbgs() << " Address reference: 0x" << Twine::utohexstr(Function.getOutputAddress()) << "\n"); LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n", getBFHash(OutputAddress))); LLVM_DEBUG(dbgs() << " Secondary Entry Points: " << NumSecondaryEntryPoints << '\n'); MapTy Map; for (const BinaryBasicBlock *const BB : Function.getLayout().getMainFragment()) writeEntriesForBB(Map, *BB, InputAddress, OutputAddress); Maps.emplace(Function.getOutputAddress(), std::move(Map)); ReverseMap.emplace(OutputAddress, InputAddress); if (!Function.isSplit()) continue; // Split maps LLVM_DEBUG(dbgs() << " Cold part\n"); for (const FunctionFragment &FF : Function.getLayout().getSplitFragments()) { ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress()); Map.clear(); for (const BinaryBasicBlock *const BB : FF) writeEntriesForBB(Map, *BB, InputAddress, FF.getAddress()); Maps.emplace(FF.getAddress(), std::move(Map)); } } // Output addresses are delta-encoded uint64_t PrevAddress = 0; writeMaps(Maps, PrevAddress, OS); writeMaps(Maps, PrevAddress, OS); BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n"; BC.outs() << "BOLT-INFO: Wrote " << FuncHashes.getNumFunctions() << " function and " << FuncHashes.getNumBasicBlocks() << " basic block hashes\n"; } APInt BoltAddressTranslation::calculateBranchEntriesBitMask(MapTy &Map, size_t EqualElems) { APInt BitMask(alignTo(EqualElems, 8), 0); size_t Index = 0; for (std::pair &KeyVal : Map) { if (Index == EqualElems) break; const uint32_t OutputOffset = KeyVal.second; if (OutputOffset & BRANCHENTRY) BitMask.setBit(Index); ++Index; } return BitMask; } size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map) const { size_t EqualOffsets = 0; for (const std::pair &KeyVal : Map) { const uint32_t OutputOffset = KeyVal.first; const uint32_t InputOffset = KeyVal.second >> 1; if (OutputOffset == InputOffset) ++EqualOffsets; else break; } return EqualOffsets; } template void BoltAddressTranslation::writeMaps(std::map &Maps, uint64_t &PrevAddress, raw_ostream &OS) { const uint32_t NumFuncs = llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) { return Cold == ColdPartSource.count(Address); }); encodeULEB128(NumFuncs, OS); LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "") << " functions for BAT.\n"); size_t PrevIndex = 0; for (auto &MapEntry : Maps) { const uint64_t Address = MapEntry.first; // Only process cold fragments in cold mode, and vice versa. if (Cold != ColdPartSource.count(Address)) continue; // NB: in `writeMaps` we use the input address because hashes are saved // early in `saveMetadata` before output addresses are assigned. const uint64_t HotInputAddress = ReverseMap[Cold ? ColdPartSource[Address] : Address]; MapTy &Map = MapEntry.second; const uint32_t NumEntries = Map.size(); LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x" << Twine::utohexstr(Address) << ".\n"); encodeULEB128(Address - PrevAddress, OS); PrevAddress = Address; const uint32_t NumSecondaryEntryPoints = SecondaryEntryPointsMap.count(Address) ? SecondaryEntryPointsMap[Address].size() : 0; if (Cold) { size_t HotIndex = std::distance(ColdPartSource.begin(), ColdPartSource.find(Address)); encodeULEB128(HotIndex - PrevIndex, OS); PrevIndex = HotIndex; } else { // Function hash size_t BFHash = getBFHash(HotInputAddress); LLVM_DEBUG(dbgs() << "Hash: " << formatv("{0:x}\n", BFHash)); OS.write(reinterpret_cast(&BFHash), 8); // Number of basic blocks size_t NumBasicBlocks = getBBHashMap(HotInputAddress).getNumBasicBlocks(); LLVM_DEBUG(dbgs() << "Basic blocks: " << NumBasicBlocks << '\n'); encodeULEB128(NumBasicBlocks, OS); // Secondary entry points encodeULEB128(NumSecondaryEntryPoints, OS); LLVM_DEBUG(dbgs() << "Secondary Entry Points: " << NumSecondaryEntryPoints << '\n'); } encodeULEB128(NumEntries, OS); // For hot fragments only: encode the number of equal offsets // (output = input) in the beginning of the function. Only encode one offset // in these cases. const size_t EqualElems = Cold ? 0 : getNumEqualOffsets(Map); if (!Cold) { encodeULEB128(EqualElems, OS); if (EqualElems) { const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems); OS.write(reinterpret_cast(BranchEntries.getRawData()), BranchEntriesBytes); LLVM_DEBUG({ dbgs() << "BranchEntries: "; SmallString<8> BitMaskStr; BranchEntries.toString(BitMaskStr, 2, false); dbgs() << BitMaskStr << '\n'; }); } } const BBHashMapTy &BBHashMap = getBBHashMap(HotInputAddress); size_t Index = 0; uint64_t InOffset = 0; size_t PrevBBIndex = 0; // Output and Input addresses and delta-encoded for (std::pair &KeyVal : Map) { const uint64_t OutputAddress = KeyVal.first + Address; encodeULEB128(OutputAddress - PrevAddress, OS); PrevAddress = OutputAddress; if (Index++ >= EqualElems) encodeSLEB128(KeyVal.second - InOffset, OS); InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded if ((InOffset & BRANCHENTRY) == 0) { const bool IsBlock = BBHashMap.isInputBlock(InOffset >> 1); unsigned BBIndex = IsBlock ? BBHashMap.getBBIndex(InOffset >> 1) : 0; size_t BBHash = IsBlock ? BBHashMap.getBBHash(InOffset >> 1) : 0; OS.write(reinterpret_cast(&BBHash), 8); // Basic block index in the input binary encodeULEB128(BBIndex - PrevBBIndex, OS); PrevBBIndex = BBIndex; LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} {2:x} {3}\n", KeyVal.first, InOffset >> 1, BBHash, BBIndex)); } } uint32_t PrevOffset = 0; if (!Cold && NumSecondaryEntryPoints) { LLVM_DEBUG(dbgs() << "Secondary entry points: "); // Secondary entry point offsets, delta-encoded for (uint32_t Offset : SecondaryEntryPointsMap[Address]) { encodeULEB128(Offset - PrevOffset, OS); LLVM_DEBUG(dbgs() << formatv("{0:x} ", Offset)); PrevOffset = Offset; } LLVM_DEBUG(dbgs() << '\n'); } } } std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) { DataExtractor DE = DataExtractor(Buf, true, 8); uint64_t Offset = 0; if (Buf.size() < 12) return make_error_code(llvm::errc::io_error); const uint32_t NameSz = DE.getU32(&Offset); const uint32_t DescSz = DE.getU32(&Offset); const uint32_t Type = DE.getU32(&Offset); if (Type != BinarySection::NT_BOLT_BAT || Buf.size() + Offset < alignTo(NameSz, 4) + DescSz) return make_error_code(llvm::errc::io_error); StringRef Name = Buf.slice(Offset, Offset + NameSz); Offset = alignTo(Offset + NameSz, 4); if (Name.substr(0, 4) != "BOLT") return make_error_code(llvm::errc::io_error); Error Err(Error::success()); std::vector HotFuncs; uint64_t PrevAddress = 0; parseMaps(HotFuncs, PrevAddress, DE, Offset, Err); parseMaps(HotFuncs, PrevAddress, DE, Offset, Err); OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n"; return errorToErrorCode(std::move(Err)); } template void BoltAddressTranslation::parseMaps(std::vector &HotFuncs, uint64_t &PrevAddress, DataExtractor &DE, uint64_t &Offset, Error &Err) { const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err); LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "") << " functions\n"); size_t HotIndex = 0; for (uint32_t I = 0; I < NumFunctions; ++I) { const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err); uint64_t HotAddress = Cold ? 0 : Address; PrevAddress = Address; uint32_t SecondaryEntryPoints = 0; if (Cold) { HotIndex += DE.getULEB128(&Offset, &Err); HotAddress = HotFuncs[HotIndex]; ColdPartSource.emplace(Address, HotAddress); } else { HotFuncs.push_back(Address); // Function hash const size_t FuncHash = DE.getU64(&Offset, &Err); FuncHashes.addEntry(Address, FuncHash); LLVM_DEBUG(dbgs() << formatv("{0:x}: hash {1:x}\n", Address, FuncHash)); // Number of basic blocks const size_t NumBasicBlocks = DE.getULEB128(&Offset, &Err); NumBasicBlocksMap.emplace(Address, NumBasicBlocks); LLVM_DEBUG(dbgs() << formatv("{0:x}: #bbs {1}, {2} bytes\n", Address, NumBasicBlocks, getULEB128Size(NumBasicBlocks))); // Secondary entry points SecondaryEntryPoints = DE.getULEB128(&Offset, &Err); LLVM_DEBUG( dbgs() << formatv("{0:x}: secondary entry points {1}, {2} bytes\n", Address, SecondaryEntryPoints, getULEB128Size(SecondaryEntryPoints))); } const uint32_t NumEntries = DE.getULEB128(&Offset, &Err); // Equal offsets, hot fragments only. size_t EqualElems = 0; APInt BEBitMask; if (!Cold) { EqualElems = DE.getULEB128(&Offset, &Err); LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n", EqualElems, getULEB128Size(EqualElems))); if (EqualElems) { const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8; BEBitMask = APInt(alignTo(EqualElems, 8), 0); LoadIntFromMemory( BEBitMask, reinterpret_cast( DE.getBytes(&Offset, BranchEntriesBytes, &Err).data()), BranchEntriesBytes); LLVM_DEBUG({ dbgs() << "BEBitMask: "; SmallString<8> BitMaskStr; BEBitMask.toString(BitMaskStr, 2, false); dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n"; }); } } MapTy Map; LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x" << Twine::utohexstr(Address) << "\n"); uint64_t InputOffset = 0; size_t BBIndex = 0; for (uint32_t J = 0; J < NumEntries; ++J) { const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err); const uint64_t OutputAddress = PrevAddress + OutputDelta; const uint64_t OutputOffset = OutputAddress - Address; PrevAddress = OutputAddress; int64_t InputDelta = 0; if (J < EqualElems) { InputOffset = (OutputOffset << 1) | BEBitMask[J]; } else { InputDelta = DE.getSLEB128(&Offset, &Err); InputOffset += InputDelta; } Map.insert(std::pair(OutputOffset, InputOffset)); size_t BBHash = 0; size_t BBIndexDelta = 0; const bool IsBranchEntry = InputOffset & BRANCHENTRY; if (!IsBranchEntry) { BBHash = DE.getU64(&Offset, &Err); BBIndexDelta = DE.getULEB128(&Offset, &Err); BBIndex += BBIndexDelta; // Map basic block hash to hot fragment by input offset getBBHashMap(HotAddress).addEntry(InputOffset >> 1, BBIndex, BBHash); } LLVM_DEBUG({ dbgs() << formatv( "{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}", OutputOffset, InputOffset, OutputDelta, getULEB128Size(OutputDelta), InputDelta, (J < EqualElems) ? 0 : getSLEB128Size(InputDelta), OutputAddress); if (!IsBranchEntry) { dbgs() << formatv(" {0:x} {1}/{2}b", BBHash, BBIndex, getULEB128Size(BBIndexDelta)); } dbgs() << '\n'; }); } Maps.insert(std::pair(Address, Map)); if (!Cold && SecondaryEntryPoints) { uint32_t EntryPointOffset = 0; LLVM_DEBUG(dbgs() << "Secondary entry points: "); for (uint32_t EntryPointId = 0; EntryPointId != SecondaryEntryPoints; ++EntryPointId) { uint32_t OffsetDelta = DE.getULEB128(&Offset, &Err); EntryPointOffset += OffsetDelta; SecondaryEntryPointsMap[Address].push_back(EntryPointOffset); LLVM_DEBUG(dbgs() << formatv("{0:x}/{1}b ", EntryPointOffset, getULEB128Size(OffsetDelta))); } LLVM_DEBUG(dbgs() << '\n'); } } } void BoltAddressTranslation::dump(raw_ostream &OS) { const size_t NumTables = Maps.size(); OS << "BAT tables for " << NumTables << " functions:\n"; for (const auto &MapEntry : Maps) { const uint64_t Address = MapEntry.first; const uint64_t HotAddress = fetchParentAddress(Address); OS << "Function Address: 0x" << Twine::utohexstr(Address); if (HotAddress == 0) OS << formatv(", hash: {0:x}", getBFHash(Address)); OS << "\n"; OS << "BB mappings:\n"; const BBHashMapTy &BBHashMap = getBBHashMap(HotAddress ? HotAddress : Address); for (const auto &Entry : MapEntry.second) { const bool IsBranch = Entry.second & BRANCHENTRY; const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit OS << "0x" << Twine::utohexstr(Entry.first) << " -> " << "0x" << Twine::utohexstr(Val); if (IsBranch) OS << " (branch)"; else OS << formatv(" hash: {0:x}", BBHashMap.getBBHash(Val)); OS << "\n"; } if (SecondaryEntryPointsMap.count(Address)) { const std::vector &SecondaryEntryPoints = SecondaryEntryPointsMap[Address]; OS << SecondaryEntryPoints.size() << " secondary entry points:\n"; for (uint32_t EntryPointOffset : SecondaryEntryPoints) OS << formatv("{0:x}\n", EntryPointOffset); } OS << "\n"; } const size_t NumColdParts = ColdPartSource.size(); if (!NumColdParts) return; OS << NumColdParts << " cold mappings:\n"; for (const auto &Entry : ColdPartSource) { OS << "0x" << Twine::utohexstr(Entry.first) << " -> " << Twine::utohexstr(Entry.second) << "\n"; } OS << "\n"; } uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress, uint64_t Offset, bool IsBranchSrc) const { auto Iter = Maps.find(FuncAddress); if (Iter == Maps.end()) return Offset; const MapTy &Map = Iter->second; auto KeyVal = Map.upper_bound(Offset); if (KeyVal == Map.begin()) return Offset; --KeyVal; const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit // Branch source addresses are translated to the first instruction of the // source BB to avoid accounting for modifications BOLT may have made in the // BB regarding deletion/addition of instructions. if (IsBranchSrc) return Val; return Offset - KeyVal->first + Val; } std::optional BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress, uint64_t From, uint64_t To) const { SmallVector, 16> Res; // Filter out trivial case if (From >= To) return Res; From -= FuncAddress; To -= FuncAddress; auto Iter = Maps.find(FuncAddress); if (Iter == Maps.end()) return std::nullopt; const MapTy &Map = Iter->second; auto FromIter = Map.upper_bound(From); if (FromIter == Map.begin()) return Res; // Skip instruction entries, to create fallthroughs we are only interested in // BB boundaries do { if (FromIter == Map.begin()) return Res; --FromIter; } while (FromIter->second & BRANCHENTRY); auto ToIter = Map.upper_bound(To); if (ToIter == Map.begin()) return Res; --ToIter; if (FromIter->first >= ToIter->first) return Res; for (auto Iter = FromIter; Iter != ToIter;) { const uint32_t Src = Iter->first; if (Iter->second & BRANCHENTRY) { ++Iter; continue; } ++Iter; while (Iter->second & BRANCHENTRY && Iter != ToIter) ++Iter; if (Iter->second & BRANCHENTRY) break; Res.emplace_back(Src, Iter->first); } return Res; } uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const { auto Iter = ColdPartSource.find(Address); if (Iter == ColdPartSource.end()) return 0; return Iter->second; } bool BoltAddressTranslation::enabledFor( llvm::object::ELFObjectFileBase *InputFile) const { for (const SectionRef &Section : InputFile->sections()) { Expected SectionNameOrErr = Section.getName(); if (Error E = SectionNameOrErr.takeError()) continue; if (SectionNameOrErr.get() == SECTION_NAME) return true; } return false; } void BoltAddressTranslation::saveMetadata(BinaryContext &BC) { for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) { // We don't need a translation table if the body of the function hasn't // changed if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple())) continue; // Prepare function and block hashes FuncHashes.addEntry(BF.getAddress(), BF.computeHash()); BF.computeBlockHashes(); BBHashMapTy &BBHashMap = getBBHashMap(BF.getAddress()); // Set BF/BB metadata for (const BinaryBasicBlock &BB : BF) BBHashMap.addEntry(BB.getInputOffset(), BB.getIndex(), BB.getHash()); } } std::unordered_map> BoltAddressTranslation::getBFBranches(uint64_t OutputAddress) const { std::unordered_map> Branches; auto FuncIt = Maps.find(OutputAddress); assert(FuncIt != Maps.end()); std::vector InputOffsets; for (const auto &KV : FuncIt->second) InputOffsets.emplace_back(KV.second); // Sort with LSB BRANCHENTRY bit. llvm::sort(InputOffsets); uint32_t BBOffset{0}; for (uint32_t InOffset : InputOffsets) { if (InOffset & BRANCHENTRY) Branches[BBOffset].push_back(InOffset >> 1); else BBOffset = InOffset >> 1; } return Branches; } unsigned BoltAddressTranslation::getSecondaryEntryPointId(uint64_t Address, uint32_t Offset) const { auto FunctionIt = SecondaryEntryPointsMap.find(Address); if (FunctionIt == SecondaryEntryPointsMap.end()) return 0; const std::vector &Offsets = FunctionIt->second; auto OffsetIt = std::find(Offsets.begin(), Offsets.end(), Offset); if (OffsetIt == Offsets.end()) return 0; // Adding one here because main entry point is not stored in BAT, and // enumeration for secondary entry points starts with 1. return OffsetIt - Offsets.begin() + 1; } std::pair BoltAddressTranslation::translateSymbol(const BinaryContext &BC, const MCSymbol &Symbol, uint32_t Offset) const { // The symbol could be a secondary entry in a cold fragment. uint64_t SymbolValue = cantFail(errorOrToExpected(BC.getSymbolValue(Symbol))); const BinaryFunction *Callee = BC.getFunctionForSymbol(&Symbol); assert(Callee); // Containing function, not necessarily the same as symbol value. const uint64_t CalleeAddress = Callee->getAddress(); const uint32_t OutputOffset = SymbolValue - CalleeAddress; const uint64_t ParentAddress = fetchParentAddress(CalleeAddress); const uint64_t HotAddress = ParentAddress ? ParentAddress : CalleeAddress; const BinaryFunction *ParentBF = BC.getBinaryFunctionAtAddress(HotAddress); const uint32_t InputOffset = translate(CalleeAddress, OutputOffset, /*IsBranchSrc*/ false) + Offset; unsigned SecondaryEntryId{0}; if (InputOffset) SecondaryEntryId = getSecondaryEntryPointId(HotAddress, InputOffset); return std::pair(ParentBF, SecondaryEntryId); } } // namespace bolt } // namespace llvm