//===---- CodeCompleteConsumer.h - Code Completion Interface ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CodeCompleteConsumer class. // //===----------------------------------------------------------------------===// #include "clang/Sema/CodeCompleteConsumer.h" #include "clang/Parse/Scope.h" #include "clang/Lex/Preprocessor.h" #include "Sema.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace clang; CodeCompleteConsumer::CodeCompleteConsumer(Sema &S) : SemaRef(S) { SemaRef.setCodeCompleteConsumer(this); } CodeCompleteConsumer::~CodeCompleteConsumer() { SemaRef.setCodeCompleteConsumer(0); } void CodeCompleteConsumer::CodeCompleteMemberReferenceExpr(Scope *S, QualType BaseType, bool IsArrow) { if (IsArrow) { if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); else if (BaseType->isObjCObjectPointerType()) /*Do nothing*/ ; else return; } ResultSet Results(*this); unsigned NextRank = 0; if (const RecordType *Record = BaseType->getAs()) { NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank, Results); if (getSema().getLangOptions().CPlusPlus) { if (!Results.empty()) // The "template" keyword can follow "->" or "." in the grammar. Results.MaybeAddResult(Result("template", NextRank++)); // FIXME: For C++, we also need to look into the current scope, since // we could have the start of a nested-name-specifier. } // Hand off the results found for code completion. ProcessCodeCompleteResults(Results.data(), Results.size()); // We're done! return; } } void CodeCompleteConsumer::CodeCompleteTag(Scope *S, ElaboratedType::TagKind TK) { ResultSet::LookupFilter Filter = 0; switch (TK) { case ElaboratedType::TK_enum: Filter = &CodeCompleteConsumer::IsEnum; break; case ElaboratedType::TK_class: case ElaboratedType::TK_struct: Filter = &CodeCompleteConsumer::IsClassOrStruct; break; case ElaboratedType::TK_union: Filter = &CodeCompleteConsumer::IsUnion; break; } ResultSet Results(*this, Filter); CollectLookupResults(S, 0, Results); // FIXME: In C++, we could have the start of a nested-name-specifier. // Add those results (with a poorer rank, naturally). ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::CodeCompleteQualifiedId(Scope *S, NestedNameSpecifier *NNS, bool EnteringContext) { CXXScopeSpec SS; SS.setScopeRep(NNS); DeclContext *Ctx = getSema().computeDeclContext(SS, EnteringContext); if (!Ctx) return; ResultSet Results(*this); unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Results); // The "template" keyword can follow "::" in the grammar if (!Results.empty()) Results.MaybeAddResult(Result("template", NextRank)); ProcessCodeCompleteResults(Results.data(), Results.size()); } void CodeCompleteConsumer::ResultSet::MaybeAddResult(Result R) { if (R.Kind != Result::RK_Declaration) { // For non-declaration results, just add the result. Results.push_back(R); return; } // FIXME: Using declarations // FIXME: Separate overload sets // Filter out any unwanted results. if (Filter && !(Completer.*Filter)(R.Declaration)) return; Decl *CanonDecl = R.Declaration->getCanonicalDecl(); unsigned IDNS = CanonDecl->getIdentifierNamespace(); // Friend declarations and declarations introduced due to friends are never // added as results. if (isa(CanonDecl) || (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend))) return; ShadowMap &SMap = ShadowMaps.back(); ShadowMap::iterator I, IEnd; for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName()); I != IEnd; ++I) { NamedDecl *ND = I->second.first; unsigned Index = I->second.second; if (ND->getCanonicalDecl() == CanonDecl) { // This is a redeclaration. Always pick the newer declaration. I->second.first = R.Declaration; Results[Index].Declaration = R.Declaration; // Pick the best rank of the two. Results[Index].Rank = std::min(Results[Index].Rank, R.Rank); // We're done. return; } } // This is a new declaration in this scope. However, check whether this // declaration name is hidden by a similarly-named declaration in an outer // scope. std::list::iterator SM, SMEnd = ShadowMaps.end(); --SMEnd; for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) { for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName()); I != IEnd; ++I) { // A tag declaration does not hide a non-tag declaration. if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag && (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | Decl::IDNS_ObjCProtocol))) continue; // Protocols are in distinct namespaces from everything else. if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) || (IDNS & Decl::IDNS_ObjCProtocol)) && I->second.first->getIdentifierNamespace() != IDNS) continue; // The newly-added result is hidden by an entry in the shadow map. if (Completer.canHiddenResultBeFound(R.Declaration, I->second.first)) { // Note that this result was hidden. R.Hidden = true; } else { // This result was hidden and cannot be found; don't bother adding // it. return; } break; } } // Insert this result into the set of results and into the current shadow // map. SMap.insert(std::make_pair(R.Declaration->getDeclName(), std::make_pair(R.Declaration, Results.size()))); Results.push_back(R); } /// \brief Enter into a new scope. void CodeCompleteConsumer::ResultSet::EnterNewScope() { ShadowMaps.push_back(ShadowMap()); } /// \brief Exit from the current scope. void CodeCompleteConsumer::ResultSet::ExitScope() { ShadowMaps.pop_back(); } // Find the next outer declaration context corresponding to this scope. static DeclContext *findOuterContext(Scope *S) { for (S = S->getParent(); S; S = S->getParent()) if (S->getEntity()) return static_cast(S->getEntity())->getPrimaryContext(); return 0; } /// \brief Collect the results of searching for declarations within the given /// scope and its parent scopes. /// /// \param S the scope in which we will start looking for declarations. /// /// \param InitialRank the initial rank given to results in this scope. /// Larger rank values will be used for results found in parent scopes. unsigned CodeCompleteConsumer::CollectLookupResults(Scope *S, unsigned InitialRank, ResultSet &Results) { if (!S) return InitialRank; // FIXME: Using directives! unsigned NextRank = InitialRank; Results.EnterNewScope(); if (S->getEntity() && !((DeclContext *)S->getEntity())->isFunctionOrMethod()) { // Look into this scope's declaration context, along with any of its // parent lookup contexts (e.g., enclosing classes), up to the point // where we hit the context stored in the next outer scope. DeclContext *Ctx = (DeclContext *)S->getEntity(); DeclContext *OuterCtx = findOuterContext(S); for (; Ctx && Ctx->getPrimaryContext() != OuterCtx; Ctx = Ctx->getLookupParent()) { if (Ctx->isFunctionOrMethod()) continue; NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, Results); } } else if (!S->getParent()) { // Look into the translation unit scope. We walk through the translation // unit's declaration context, because the Scope itself won't have all of // the declarations if NextRank = CollectMemberLookupResults( getSema().Context.getTranslationUnitDecl(), NextRank + 1, Results); } else { // Walk through the declarations in this Scope. for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { if (NamedDecl *ND = dyn_cast((Decl *)((*D).get()))) Results.MaybeAddResult(Result(ND, NextRank)); } NextRank = NextRank + 1; } // Lookup names in the parent scope. NextRank = CollectLookupResults(S->getParent(), NextRank, Results); Results.ExitScope(); return NextRank; } /// \brief Collect the results of searching for members within the given /// declaration context. /// /// \param Ctx the declaration context from which we will gather results. /// /// \param InitialRank the initial rank given to results in this declaration /// context. Larger rank values will be used for, e.g., members found in /// base classes. /// /// \param Results the result set that will be extended with any results /// found within this declaration context (and, for a C++ class, its bases). /// /// \returns the next higher rank value, after considering all of the /// names within this declaration context. unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx, unsigned InitialRank, ResultSet &Results) { // Enumerate all of the results in this context. Results.EnterNewScope(); for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx; CurCtx = CurCtx->getNextContext()) { for (DeclContext::decl_iterator D = CurCtx->decls_begin(), DEnd = CurCtx->decls_end(); D != DEnd; ++D) { if (NamedDecl *ND = dyn_cast(*D)) Results.MaybeAddResult(Result(ND, InitialRank)); } } // Traverse the contexts of inherited classes. unsigned NextRank = InitialRank; if (CXXRecordDecl *Record = dyn_cast(Ctx)) { for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), BEnd = Record->bases_end(); B != BEnd; ++B) { QualType BaseType = B->getType(); // Don't look into dependent bases, because name lookup can't look // there anyway. if (BaseType->isDependentType()) continue; const RecordType *Record = BaseType->getAs(); if (!Record) continue; // FIXME: We should keep track of the virtual bases we visit, so // that we don't visit them more than once. // FIXME: It would be nice to be able to determine whether referencing // a particular member would be ambiguous. For example, given // // struct A { int member; }; // struct B { int member; }; // struct C : A, B { }; // // void f(C *c) { c->### } // accessing 'member' would result in an ambiguity. However, code // completion could be smart enough to qualify the member with the // base class, e.g., // // c->B::member // // or // // c->A::member // Collect results from this base class (and its bases). NextRank = std::max(NextRank, CollectMemberLookupResults(Record->getDecl(), InitialRank + 1, Results)); } } // FIXME: Look into base classes in Objective-C! Results.ExitScope(); return NextRank; } /// \brief Determines whether the given declaration is suitable as the /// start of a C++ nested-name-specifier, e.g., a class or namespace. bool CodeCompleteConsumer::IsNestedNameSpecifier(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); return getSema().isAcceptableNestedNameSpecifier(ND); } /// \brief Determines whether the given declaration is an enumeration. bool CodeCompleteConsumer::IsEnum(NamedDecl *ND) const { return isa(ND); } /// \brief Determines whether the given declaration is a class or struct. bool CodeCompleteConsumer::IsClassOrStruct(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TagDecl::TK_class || RD->getTagKind() == TagDecl::TK_struct; return false; } /// \brief Determines whether the given declaration is a union. bool CodeCompleteConsumer::IsUnion(NamedDecl *ND) const { // Allow us to find class templates, too. if (ClassTemplateDecl *ClassTemplate = dyn_cast(ND)) ND = ClassTemplate->getTemplatedDecl(); if (RecordDecl *RD = dyn_cast(ND)) return RD->getTagKind() == TagDecl::TK_union; return false; } namespace { struct VISIBILITY_HIDDEN SortCodeCompleteResult { typedef CodeCompleteConsumer::Result Result; bool operator()(const Result &X, const Result &Y) const { // Sort first by rank. if (X.Rank < Y.Rank) return true; else if (X.Rank > Y.Rank) return false; // Result kinds are ordered by decreasing importance. if (X.Kind < Y.Kind) return true; else if (X.Kind > Y.Kind) return false; // Non-hidden names precede hidden names. if (X.Hidden != Y.Hidden) return !X.Hidden; // Ordering depends on the kind of result. switch (X.Kind) { case Result::RK_Declaration: // Order based on the declaration names. return X.Declaration->getDeclName() < Y.Declaration->getDeclName(); case Result::RK_Keyword: return strcmp(X.Keyword, Y.Keyword) == -1; } // If only our C++ compiler did control-flow warnings properly. return false; } }; } /// \brief Determines whether the given hidden result could be found with /// some extra work, e.g., by qualifying the name. /// /// \param Hidden the declaration that is hidden by the currenly \p Visible /// declaration. /// /// \param Visible the declaration with the same name that is already visible. /// /// \returns true if the hidden result can be found by some mechanism, /// false otherwise. bool CodeCompleteConsumer::canHiddenResultBeFound(NamedDecl *Hidden, NamedDecl *Visible) { // In C, there is no way to refer to a hidden name. if (!getSema().getLangOptions().CPlusPlus) return false; DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext(); // There is no way to qualify a name declared in a function or method. if (HiddenCtx->isFunctionOrMethod()) return false; // If the hidden and visible declarations are in different name-lookup // contexts, then we can qualify the name of the hidden declaration. // FIXME: Optionally compute the string needed to refer to the hidden // name. return HiddenCtx != Visible->getDeclContext()->getLookupContext(); } void PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(Result *Results, unsigned NumResults) { // Sort the results by rank/kind/etc. std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult()); // Print the results. for (unsigned I = 0; I != NumResults; ++I) { switch (Results[I].Kind) { case Result::RK_Declaration: OS << Results[I].Declaration->getNameAsString() << " : " << Results[I].Rank; if (Results[I].Hidden) OS << " (Hidden)"; OS << '\n'; break; case Result::RK_Keyword: OS << Results[I].Keyword << " : " << Results[I].Rank << '\n'; break; } } // Once we've printed the code-completion results, suppress remaining // diagnostics. // FIXME: Move this somewhere else! getSema().PP.getDiagnostics().setSuppressAllDiagnostics(); }