//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements miscellaneous loop analysis routines. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/AffineOps/AffineOps.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/Analysis/NestedMatcher.h" #include "mlir/Analysis/VectorAnalysis.h" #include "mlir/IR/AffineStructures.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Instruction.h" #include "mlir/StandardOps/StandardOps.h" #include "mlir/SuperVectorOps/SuperVectorOps.h" #include "mlir/Support/Functional.h" #include "mlir/Support/MathExtras.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallString.h" #include using namespace mlir; /// Returns the trip count of the loop as an affine expression if the latter is /// expressible as an affine expression, and nullptr otherwise. The trip count /// expression is simplified before returning. AffineExpr mlir::getTripCountExpr(ConstOpPointer forOp) { // upper_bound - lower_bound int64_t loopSpan; int64_t step = forOp->getStep(); auto *context = forOp->getInstruction()->getContext(); if (forOp->hasConstantBounds()) { int64_t lb = forOp->getConstantLowerBound(); int64_t ub = forOp->getConstantUpperBound(); loopSpan = ub - lb; } else { auto lbMap = forOp->getLowerBoundMap(); auto ubMap = forOp->getUpperBoundMap(); // TODO(bondhugula): handle max/min of multiple expressions. if (lbMap.getNumResults() != 1 || ubMap.getNumResults() != 1) return nullptr; // TODO(bondhugula): handle bounds with different operands. // Bounds have different operands, unhandled for now. if (!forOp->matchingBoundOperandList()) return nullptr; // ub_expr - lb_expr AffineExpr lbExpr(lbMap.getResult(0)); AffineExpr ubExpr(ubMap.getResult(0)); auto loopSpanExpr = simplifyAffineExpr( ubExpr - lbExpr, std::max(lbMap.getNumDims(), ubMap.getNumDims()), std::max(lbMap.getNumSymbols(), ubMap.getNumSymbols())); auto cExpr = loopSpanExpr.dyn_cast(); if (!cExpr) return loopSpanExpr.ceilDiv(step); loopSpan = cExpr.getValue(); } // 0 iteration loops. if (loopSpan < 0) return 0; return getAffineConstantExpr(static_cast(ceilDiv(loopSpan, step)), context); } /// Returns the trip count of the loop if it's a constant, None otherwise. This /// method uses affine expression analysis (in turn using getTripCount) and is /// able to determine constant trip count in non-trivial cases. llvm::Optional mlir::getConstantTripCount(ConstOpPointer forOp) { auto tripCountExpr = getTripCountExpr(forOp); if (!tripCountExpr) return None; if (auto constExpr = tripCountExpr.dyn_cast()) return constExpr.getValue(); return None; } /// Returns the greatest known integral divisor of the trip count. Affine /// expression analysis is used (indirectly through getTripCount), and /// this method is thus able to determine non-trivial divisors. uint64_t mlir::getLargestDivisorOfTripCount(ConstOpPointer forOp) { auto tripCountExpr = getTripCountExpr(forOp); if (!tripCountExpr) return 1; if (auto constExpr = tripCountExpr.dyn_cast()) { uint64_t tripCount = constExpr.getValue(); // 0 iteration loops (greatest divisor is 2^64 - 1). if (tripCount == 0) return ULONG_MAX; // The greatest divisor is the trip count. return tripCount; } // Trip count is not a known constant; return its largest known divisor. return tripCountExpr.getLargestKnownDivisor(); } bool mlir::isAccessInvariant(const Value &iv, const Value &index) { assert(isForInductionVar(&iv) && "iv must be a AffineForOp"); assert(index.getType().isa() && "index must be of IndexType"); SmallVector affineApplyOps; getReachableAffineApplyOps({const_cast(&index)}, affineApplyOps); if (affineApplyOps.empty()) { // Pointer equality test because of Value pointer semantics. return &index != &iv; } if (affineApplyOps.size() > 1) { affineApplyOps[0]->emitError( "CompositionAffineMapsPass must have been run: there should be at most " "one AffineApplyOp"); return false; } auto composeOp = affineApplyOps[0]->cast(); // We need yet another level of indirection because the `dim` index of the // access may not correspond to the `dim` index of composeOp. return !composeOp->getAsAffineValueMap().isFunctionOf( 0, const_cast(&iv)); } llvm::DenseSet mlir::getInvariantAccesses(const Value &iv, llvm::ArrayRef indices) { llvm::DenseSet res; for (unsigned idx = 0, n = indices.size(); idx < n; ++idx) { auto *val = indices[idx]; if (isAccessInvariant(iv, *val)) { res.insert(val); } } return res; } /// Given: /// 1. an induction variable `iv` of type AffineForOp; /// 2. a `memoryOp` of type const LoadOp& or const StoreOp&; /// 3. the index of the `fastestVaryingDim` along which to check; /// determines whether `memoryOp`[`fastestVaryingDim`] is a contiguous access /// along `iv`. /// Contiguous is defined as either invariant or varying only along /// `fastestVaryingDim`. /// /// Prerequisites: /// 1. `iv` of the proper type; /// 2. the MemRef accessed by `memoryOp` has no layout map or at most an /// identity layout map. /// /// Currently only supports no layoutMap or identity layoutMap in the MemRef. /// Returns false if the MemRef has a non-identity layoutMap or more than /// 1 layoutMap. This is conservative. /// // TODO(ntv): check strides. template static bool isContiguousAccess(const Value &iv, const LoadOrStoreOp &memoryOp, unsigned fastestVaryingDim) { static_assert(std::is_same::value || std::is_same::value, "Must be called on either const LoadOp & or const StoreOp &"); auto memRefType = memoryOp.getMemRefType(); if (fastestVaryingDim >= memRefType.getRank()) { memoryOp.emitError("fastest varying dim out of bounds"); return false; } auto layoutMap = memRefType.getAffineMaps(); // TODO(ntv): remove dependence on Builder once we support non-identity // layout map. Builder b(memoryOp.getInstruction()->getContext()); if (layoutMap.size() >= 2 || (layoutMap.size() == 1 && !(layoutMap[0] == b.getMultiDimIdentityMap(layoutMap[0].getNumDims())))) { return memoryOp.emitError("NYI: non-trivial layoutMap"), false; } auto indices = memoryOp.getIndices(); auto numIndices = llvm::size(indices); unsigned d = 0; for (auto index : indices) { if (fastestVaryingDim == (numIndices - 1) - d++) { continue; } if (!isAccessInvariant(iv, *index)) { return false; } } return true; } template static bool isVectorElement(LoadOrStoreOpPointer memoryOp) { auto memRefType = memoryOp->getMemRefType(); return memRefType.getElementType().template isa(); } static bool isVectorTransferReadOrWrite(const Instruction &inst) { return inst.isa() || inst.isa(); } using VectorizableInstFun = std::function, const Instruction &)>; static bool isVectorizableLoopWithCond(ConstOpPointer loop, VectorizableInstFun isVectorizableInst) { auto *forInst = const_cast(loop->getInstruction()); if (!matcher::isParallelLoop(*forInst) && !matcher::isReductionLoop(*forInst)) { return false; } // No vectorization across conditionals for now. auto conditionals = matcher::If(); SmallVector conditionalsMatched; conditionals.match(forInst, &conditionalsMatched); if (!conditionalsMatched.empty()) { return false; } // No vectorization across unknown regions. auto regions = matcher::Op([](const Instruction &inst) -> bool { return inst.getNumBlockLists() != 0 && !(inst.isa() || inst.isa()); }); SmallVector regionsMatched; regions.match(forInst, ®ionsMatched); if (!regionsMatched.empty()) { return false; } auto vectorTransfers = matcher::Op(isVectorTransferReadOrWrite); SmallVector vectorTransfersMatched; vectorTransfers.match(forInst, &vectorTransfersMatched); if (!vectorTransfersMatched.empty()) { return false; } auto loadAndStores = matcher::Op(matcher::isLoadOrStore); SmallVector loadAndStoresMatched; loadAndStores.match(forInst, &loadAndStoresMatched); for (auto ls : loadAndStoresMatched) { auto *op = ls.getMatchedInstruction(); auto load = op->dyn_cast(); auto store = op->dyn_cast(); // Only scalar types are considered vectorizable, all load/store must be // vectorizable for a loop to qualify as vectorizable. // TODO(ntv): ponder whether we want to be more general here. bool vector = load ? isVectorElement(load) : isVectorElement(store); if (vector) { return false; } if (!isVectorizableInst(loop, *op)) { return false; } } return true; } bool mlir::isVectorizableLoopAlongFastestVaryingMemRefDim( ConstOpPointer loop, unsigned fastestVaryingDim) { VectorizableInstFun fun([fastestVaryingDim](ConstOpPointer loop, const Instruction &op) { auto load = op.dyn_cast(); auto store = op.dyn_cast(); return load ? isContiguousAccess(*loop->getInductionVar(), *load, fastestVaryingDim) : isContiguousAccess(*loop->getInductionVar(), *store, fastestVaryingDim); }); return isVectorizableLoopWithCond(loop, fun); } bool mlir::isVectorizableLoop(ConstOpPointer loop) { VectorizableInstFun fun( // TODO: implement me [](ConstOpPointer loop, const Instruction &op) { return true; }); return isVectorizableLoopWithCond(loop, fun); } /// Checks whether SSA dominance would be violated if a for inst's body /// instructions are shifted by the specified shifts. This method checks if a /// 'def' and all its uses have the same shift factor. // TODO(mlir-team): extend this to check for memory-based dependence // violation when we have the support. bool mlir::isInstwiseShiftValid(ConstOpPointer forOp, ArrayRef shifts) { auto *forBody = forOp->getBody(); assert(shifts.size() == forBody->getInstructions().size()); // Work backwards over the body of the block so that we only need to iterator // over the body once. DenseMap forBodyShift; for (auto it : llvm::enumerate(llvm::reverse(forBody->getInstructions()))) { const auto &inst = it.value(); // Get the index of the current instruction, note that we are iterating in // reverse so we need to fix it up. size_t index = shifts.size() - it.index() - 1; // Remember the shift of this instruction. uint64_t shift = shifts[index]; forBodyShift.try_emplace(&inst, shift); // Validate the results of this instruction if it were to be shifted. for (unsigned i = 0, e = inst.getNumResults(); i < e; ++i) { const Value *result = inst.getResult(i); for (const InstOperand &use : result->getUses()) { // If an ancestor instruction doesn't lie in the block of forOp, // there is no shift to check. if (auto *ancInst = forBody->findAncestorInstInBlock(*use.getOwner())) if (shift != forBodyShift[ancInst]) return false; } } } return true; }