//===------- SemaTemplateInstantiate.cpp - C++ Template Instantiation ------===/ // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===/ // // This file implements C++ template instantiation. // //===----------------------------------------------------------------------===/ #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Expr.h" #include "clang/AST/DeclTemplate.h" #include "clang/Parse/DeclSpec.h" #include "clang/Basic/LangOptions.h" #include "llvm/Support/Compiler.h" using namespace clang; //===----------------------------------------------------------------------===/ // Template Instantiation Support //===----------------------------------------------------------------------===/ Sema::InstantiatingTemplate:: InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, CXXRecordDecl *Entity, SourceRange InstantiationRange) : SemaRef(SemaRef) { Invalid = CheckInstantiationDepth(PointOfInstantiation, InstantiationRange); if (!Invalid) { ActiveTemplateInstantiation Inst; Inst.Kind = ActiveTemplateInstantiation::TemplateInstantiation; Inst.PointOfInstantiation = PointOfInstantiation; Inst.Entity = reinterpret_cast(Entity); Inst.TemplateArgs = 0; Inst.NumTemplateArgs = 0; Inst.InstantiationRange = InstantiationRange; SemaRef.ActiveTemplateInstantiations.push_back(Inst); Invalid = false; } } Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceRange InstantiationRange) : SemaRef(SemaRef) { Invalid = CheckInstantiationDepth(PointOfInstantiation, InstantiationRange); if (!Invalid) { ActiveTemplateInstantiation Inst; Inst.Kind = ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation; Inst.PointOfInstantiation = PointOfInstantiation; Inst.Entity = reinterpret_cast(Template); Inst.TemplateArgs = TemplateArgs; Inst.NumTemplateArgs = NumTemplateArgs; Inst.InstantiationRange = InstantiationRange; SemaRef.ActiveTemplateInstantiations.push_back(Inst); Invalid = false; } } Sema::InstantiatingTemplate::~InstantiatingTemplate() { if (!Invalid) SemaRef.ActiveTemplateInstantiations.pop_back(); } bool Sema::InstantiatingTemplate::CheckInstantiationDepth( SourceLocation PointOfInstantiation, SourceRange InstantiationRange) { if (SemaRef.ActiveTemplateInstantiations.size() <= SemaRef.getLangOptions().InstantiationDepth) return false; SemaRef.Diag(PointOfInstantiation, diag::err_template_recursion_depth_exceeded) << SemaRef.getLangOptions().InstantiationDepth << InstantiationRange; SemaRef.Diag(PointOfInstantiation, diag::note_template_recursion_depth) << SemaRef.getLangOptions().InstantiationDepth; return true; } /// \brief Prints the current instantiation stack through a series of /// notes. void Sema::PrintInstantiationStack() { for (llvm::SmallVector::reverse_iterator Active = ActiveTemplateInstantiations.rbegin(), ActiveEnd = ActiveTemplateInstantiations.rend(); Active != ActiveEnd; ++Active) { switch (Active->Kind) { case ActiveTemplateInstantiation::TemplateInstantiation: { unsigned DiagID = diag::note_template_member_class_here; CXXRecordDecl *Record = (CXXRecordDecl *)Active->Entity; if (isa(Record)) DiagID = diag::note_template_class_instantiation_here; Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr), DiagID) << Context.getTypeDeclType(Record) << Active->InstantiationRange; break; } case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation: { TemplateDecl *Template = cast((Decl *)Active->Entity); std::string TemplateArgsStr = TemplateSpecializationType::PrintTemplateArgumentList( Active->TemplateArgs, Active->NumTemplateArgs); Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr), diag::note_default_arg_instantiation_here) << (Template->getNameAsString() + TemplateArgsStr) << Active->InstantiationRange; break; } } } } //===----------------------------------------------------------------------===/ // Template Instantiation for Types //===----------------------------------------------------------------------===/ namespace { class VISIBILITY_HIDDEN TemplateTypeInstantiator { Sema &SemaRef; const TemplateArgument *TemplateArgs; unsigned NumTemplateArgs; SourceLocation Loc; DeclarationName Entity; public: TemplateTypeInstantiator(Sema &SemaRef, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceLocation Loc, DeclarationName Entity) : SemaRef(SemaRef), TemplateArgs(TemplateArgs), NumTemplateArgs(NumTemplateArgs), Loc(Loc), Entity(Entity) { } QualType operator()(QualType T) const { return Instantiate(T); } QualType Instantiate(QualType T) const; // Declare instantiate functions for each type. #define TYPE(Class, Base) \ QualType Instantiate##Class##Type(const Class##Type *T, \ unsigned Quals) const; #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" }; } QualType TemplateTypeInstantiator::InstantiateExtQualType(const ExtQualType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate ExtQualType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateBuiltinType(const BuiltinType *T, unsigned Quals) const { assert(false && "Builtin types are not dependent and cannot be instantiated"); return QualType(T, Quals); } QualType TemplateTypeInstantiator:: InstantiateFixedWidthIntType(const FixedWidthIntType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate FixedWidthIntType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateComplexType(const ComplexType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate ComplexType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiatePointerType(const PointerType *T, unsigned Quals) const { QualType PointeeType = Instantiate(T->getPointeeType()); if (PointeeType.isNull()) return QualType(); return SemaRef.BuildPointerType(PointeeType, Quals, Loc, Entity); } QualType TemplateTypeInstantiator::InstantiateBlockPointerType(const BlockPointerType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate BlockPointerType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateLValueReferenceType( const LValueReferenceType *T, unsigned Quals) const { QualType ReferentType = Instantiate(T->getPointeeType()); if (ReferentType.isNull()) return QualType(); return SemaRef.BuildReferenceType(ReferentType, true, Quals, Loc, Entity); } QualType TemplateTypeInstantiator::InstantiateRValueReferenceType( const RValueReferenceType *T, unsigned Quals) const { QualType ReferentType = Instantiate(T->getPointeeType()); if (ReferentType.isNull()) return QualType(); return SemaRef.BuildReferenceType(ReferentType, false, Quals, Loc, Entity); } QualType TemplateTypeInstantiator:: InstantiateMemberPointerType(const MemberPointerType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate MemberPointerType yet"); return QualType(); } QualType TemplateTypeInstantiator:: InstantiateConstantArrayType(const ConstantArrayType *T, unsigned Quals) const { QualType ElementType = Instantiate(T->getElementType()); if (ElementType.isNull()) return ElementType; // Build a temporary integer literal to specify the size for // BuildArrayType. Since we have already checked the size as part of // creating the dependent array type in the first place, we know // there aren't any errors. // FIXME: Is IntTy big enough? Maybe not, but LongLongTy causes // problems that I have yet to investigate. IntegerLiteral ArraySize(T->getSize(), SemaRef.Context.IntTy, Loc); return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(), &ArraySize, T->getIndexTypeQualifier(), Loc, Entity); } QualType TemplateTypeInstantiator:: InstantiateIncompleteArrayType(const IncompleteArrayType *T, unsigned Quals) const { QualType ElementType = Instantiate(T->getElementType()); if (ElementType.isNull()) return ElementType; return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(), 0, T->getIndexTypeQualifier(), Loc, Entity); } QualType TemplateTypeInstantiator:: InstantiateVariableArrayType(const VariableArrayType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate VariableArrayType yet"); return QualType(); } QualType TemplateTypeInstantiator:: InstantiateDependentSizedArrayType(const DependentSizedArrayType *T, unsigned Quals) const { Expr *ArraySize = T->getSizeExpr(); assert(ArraySize->isValueDependent() && "dependent sized array types must have value dependent size expr"); // Instantiate the element type if needed QualType ElementType = T->getElementType(); if (ElementType->isDependentType()) { ElementType = Instantiate(ElementType); if (ElementType.isNull()) return QualType(); } // Instantiate the size expression Sema::OwningExprResult InstantiatedArraySize = SemaRef.InstantiateExpr(ArraySize, TemplateArgs, NumTemplateArgs); if (InstantiatedArraySize.isInvalid()) return QualType(); return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(), (Expr *)InstantiatedArraySize.release(), T->getIndexTypeQualifier(), Loc, Entity); } QualType TemplateTypeInstantiator::InstantiateVectorType(const VectorType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate VectorType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateExtVectorType(const ExtVectorType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate ExtVectorType yet"); return QualType(); } QualType TemplateTypeInstantiator:: InstantiateFunctionProtoType(const FunctionProtoType *T, unsigned Quals) const { QualType ResultType = Instantiate(T->getResultType()); if (ResultType.isNull()) return ResultType; llvm::SmallVector ParamTypes; for (FunctionProtoType::arg_type_iterator Param = T->arg_type_begin(), ParamEnd = T->arg_type_end(); Param != ParamEnd; ++Param) { QualType P = Instantiate(*Param); if (P.isNull()) return P; ParamTypes.push_back(P); } return SemaRef.BuildFunctionType(ResultType, &ParamTypes[0], ParamTypes.size(), T->isVariadic(), T->getTypeQuals(), Loc, Entity); } QualType TemplateTypeInstantiator:: InstantiateFunctionNoProtoType(const FunctionNoProtoType *T, unsigned Quals) const { assert(false && "Functions without prototypes cannot be dependent."); return QualType(); } QualType TemplateTypeInstantiator::InstantiateTypedefType(const TypedefType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate TypedefType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateTypeOfExprType(const TypeOfExprType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate TypeOfExprType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateTypeOfType(const TypeOfType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate TypeOfType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateRecordType(const RecordType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate RecordType yet"); return QualType(); } QualType TemplateTypeInstantiator::InstantiateEnumType(const EnumType *T, unsigned Quals) const { // FIXME: Implement this assert(false && "Cannot instantiate EnumType yet"); return QualType(); } QualType TemplateTypeInstantiator:: InstantiateTemplateTypeParmType(const TemplateTypeParmType *T, unsigned Quals) const { if (T->getDepth() == 0) { // Replace the template type parameter with its corresponding // template argument. assert(T->getIndex() < NumTemplateArgs && "Wrong # of template args"); assert(TemplateArgs[T->getIndex()].getKind() == TemplateArgument::Type && "Template argument kind mismatch"); QualType Result = TemplateArgs[T->getIndex()].getAsType(); if (Result.isNull() || !Quals) return Result; // C++ [dcl.ref]p1: // [...] Cv-qualified references are ill-formed except when // the cv-qualifiers are introduced through the use of a // typedef (7.1.3) or of a template type argument (14.3), in // which case the cv-qualifiers are ignored. if (Quals && Result->isReferenceType()) Quals = 0; return QualType(Result.getTypePtr(), Quals | Result.getCVRQualifiers()); } // The template type parameter comes from an inner template (e.g., // the template parameter list of a member template inside the // template we are instantiating). Create a new template type // parameter with the template "level" reduced by one. return SemaRef.Context.getTemplateTypeParmType(T->getDepth() - 1, T->getIndex(), T->getName()) .getQualifiedType(Quals); } QualType TemplateTypeInstantiator:: InstantiateTemplateSpecializationType( const TemplateSpecializationType *T, unsigned Quals) const { llvm::SmallVector InstantiatedTemplateArgs; InstantiatedTemplateArgs.reserve(T->getNumArgs()); for (TemplateSpecializationType::iterator Arg = T->begin(), ArgEnd = T->end(); Arg != ArgEnd; ++Arg) { switch (Arg->getKind()) { case TemplateArgument::Type: { QualType T = SemaRef.InstantiateType(Arg->getAsType(), TemplateArgs, NumTemplateArgs, Arg->getLocation(), DeclarationName()); if (T.isNull()) return QualType(); InstantiatedTemplateArgs.push_back( TemplateArgument(Arg->getLocation(), T)); break; } case TemplateArgument::Declaration: case TemplateArgument::Integral: InstantiatedTemplateArgs.push_back(*Arg); break; case TemplateArgument::Expression: Sema::OwningExprResult E = SemaRef.InstantiateExpr(Arg->getAsExpr(), TemplateArgs, NumTemplateArgs); if (E.isInvalid()) return QualType(); InstantiatedTemplateArgs.push_back((Expr *)E.release()); break; } } // FIXME: We're missing the locations of the template name, '<', and // '>'. TemplateName Name = SemaRef.InstantiateTemplateName(T->getTemplateName(), Loc, TemplateArgs, NumTemplateArgs); return SemaRef.CheckTemplateIdType(Name, Loc, SourceLocation(), &InstantiatedTemplateArgs[0], InstantiatedTemplateArgs.size(), SourceLocation()); } QualType TemplateTypeInstantiator:: InstantiateQualifiedNameType(const QualifiedNameType *T, unsigned Quals) const { // When we instantiated a qualified name type, there's no point in // keeping the qualification around in the instantiated result. So, // just instantiate the named type. return (*this)(T->getNamedType()); } QualType TemplateTypeInstantiator:: InstantiateTypenameType(const TypenameType *T, unsigned Quals) const { if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { // When the typename type refers to a template-id, the template-id // is dependent and has enough information to instantiate the // result of the typename type. Since we don't care about keeping // the spelling of the typename type in template instantiations, // we just instantiate the template-id. return InstantiateTemplateSpecializationType(TemplateId, Quals); } NestedNameSpecifier *NNS = SemaRef.InstantiateNestedNameSpecifier(T->getQualifier(), SourceRange(Loc), TemplateArgs, NumTemplateArgs); if (!NNS) return QualType(); return SemaRef.CheckTypenameType(NNS, *T->getIdentifier(), SourceRange(Loc)); } QualType TemplateTypeInstantiator:: InstantiateObjCInterfaceType(const ObjCInterfaceType *T, unsigned Quals) const { assert(false && "Objective-C types cannot be dependent"); return QualType(); } QualType TemplateTypeInstantiator:: InstantiateObjCQualifiedInterfaceType(const ObjCQualifiedInterfaceType *T, unsigned Quals) const { assert(false && "Objective-C types cannot be dependent"); return QualType(); } QualType TemplateTypeInstantiator:: InstantiateObjCQualifiedIdType(const ObjCQualifiedIdType *T, unsigned Quals) const { assert(false && "Objective-C types cannot be dependent"); return QualType(); } QualType TemplateTypeInstantiator:: InstantiateObjCQualifiedClassType(const ObjCQualifiedClassType *T, unsigned Quals) const { assert(false && "Objective-C types cannot be dependent"); return QualType(); } /// \brief The actual implementation of Sema::InstantiateType(). QualType TemplateTypeInstantiator::Instantiate(QualType T) const { // If T is not a dependent type, there is nothing to do. if (!T->isDependentType()) return T; switch (T->getTypeClass()) { #define TYPE(Class, Base) \ case Type::Class: \ return Instantiate##Class##Type(cast(T.getTypePtr()), \ T.getCVRQualifiers()); #define ABSTRACT_TYPE(Class, Base) #include "clang/AST/TypeNodes.def" } assert(false && "Not all types have been decoded for instantiation"); return QualType(); } /// \brief Instantiate the type T with a given set of template arguments. /// /// This routine substitutes the given template arguments into the /// type T and produces the instantiated type. /// /// \param T the type into which the template arguments will be /// substituted. If this type is not dependent, it will be returned /// immediately. /// /// \param TemplateArgs the template arguments that will be /// substituted for the top-level template parameters within T. /// /// \param NumTemplateArgs the number of template arguments provided /// by TemplateArgs. /// /// \param Loc the location in the source code where this substitution /// is being performed. It will typically be the location of the /// declarator (if we're instantiating the type of some declaration) /// or the location of the type in the source code (if, e.g., we're /// instantiating the type of a cast expression). /// /// \param Entity the name of the entity associated with a declaration /// being instantiated (if any). May be empty to indicate that there /// is no such entity (if, e.g., this is a type that occurs as part of /// a cast expression) or that the entity has no name (e.g., an /// unnamed function parameter). /// /// \returns If the instantiation succeeds, the instantiated /// type. Otherwise, produces diagnostics and returns a NULL type. QualType Sema::InstantiateType(QualType T, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs, SourceLocation Loc, DeclarationName Entity) { assert(!ActiveTemplateInstantiations.empty() && "Cannot perform an instantiation without some context on the " "instantiation stack"); // If T is not a dependent type, there is nothing to do. if (!T->isDependentType()) return T; TemplateTypeInstantiator Instantiator(*this, TemplateArgs, NumTemplateArgs, Loc, Entity); return Instantiator(T); } /// \brief Instantiate the base class specifiers of the given class /// template specialization. /// /// Produces a diagnostic and returns true on error, returns false and /// attaches the instantiated base classes to the class template /// specialization if successful. bool Sema::InstantiateBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { bool Invalid = false; llvm::SmallVector InstantiatedBases; for (ClassTemplateSpecializationDecl::base_class_iterator Base = Pattern->bases_begin(), BaseEnd = Pattern->bases_end(); Base != BaseEnd; ++Base) { if (!Base->getType()->isDependentType()) { // FIXME: Allocate via ASTContext InstantiatedBases.push_back(new CXXBaseSpecifier(*Base)); continue; } QualType BaseType = InstantiateType(Base->getType(), TemplateArgs, NumTemplateArgs, Base->getSourceRange().getBegin(), DeclarationName()); if (BaseType.isNull()) { Invalid = true; continue; } if (CXXBaseSpecifier *InstantiatedBase = CheckBaseSpecifier(Instantiation, Base->getSourceRange(), Base->isVirtual(), Base->getAccessSpecifierAsWritten(), BaseType, /*FIXME: Not totally accurate */ Base->getSourceRange().getBegin())) InstantiatedBases.push_back(InstantiatedBase); else Invalid = true; } if (!Invalid && AttachBaseSpecifiers(Instantiation, &InstantiatedBases[0], InstantiatedBases.size())) Invalid = true; return Invalid; } /// \brief Instantiate the definition of a class from a given pattern. /// /// \param PointOfInstantiation The point of instantiation within the /// source code. /// /// \param Instantiation is the declaration whose definition is being /// instantiated. This will be either a class template specialization /// or a member class of a class template specialization. /// /// \param Pattern is the pattern from which the instantiation /// occurs. This will be either the declaration of a class template or /// the declaration of a member class of a class template. /// /// \param TemplateArgs The template arguments to be substituted into /// the pattern. /// /// \param NumTemplateArgs The number of templates arguments in /// TemplateArgs. /// /// \returns true if an error occurred, false otherwise. bool Sema::InstantiateClass(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { bool Invalid = false; CXXRecordDecl *PatternDef = cast_or_null(Pattern->getDefinition(Context)); if (!PatternDef) { if (Pattern == Instantiation->getInstantiatedFromMemberClass()) { Diag(PointOfInstantiation, diag::err_implicit_instantiate_member_undefined) << Context.getTypeDeclType(Instantiation); Diag(Pattern->getLocation(), diag::note_member_of_template_here); } else { Diag(PointOfInstantiation, diag::err_template_implicit_instantiate_undefined) << Context.getTypeDeclType(Instantiation); Diag(Pattern->getLocation(), diag::note_template_decl_here); } return true; } Pattern = PatternDef; InstantiatingTemplate Inst(*this, PointOfInstantiation, Instantiation); if (Inst) return true; // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. DeclContext *PreviousContext = CurContext; CurContext = Instantiation; // Start the definition of this instantiation. Instantiation->startDefinition(); // Instantiate the base class specifiers. if (InstantiateBaseSpecifiers(Instantiation, Pattern, TemplateArgs, NumTemplateArgs)) Invalid = true; llvm::SmallVector Fields; for (RecordDecl::decl_iterator Member = Pattern->decls_begin(Context), MemberEnd = Pattern->decls_end(Context); Member != MemberEnd; ++Member) { Decl *NewMember = InstantiateDecl(*Member, Instantiation, TemplateArgs, NumTemplateArgs); if (NewMember) { if (NewMember->isInvalidDecl()) Invalid = true; else if (FieldDecl *Field = dyn_cast(NewMember)) Fields.push_back(DeclPtrTy::make(Field)); } else { // FIXME: Eventually, a NULL return will mean that one of the // instantiations was a semantic disaster, and we'll want to set // Invalid = true. For now, we expect to skip some members that // we can't yet handle. } } // Finish checking fields. ActOnFields(0, Instantiation->getLocation(), DeclPtrTy::make(Instantiation), &Fields[0], Fields.size(), SourceLocation(), SourceLocation(), 0); // Add any implicitly-declared members that we might need. AddImplicitlyDeclaredMembersToClass(Instantiation); // Exit the scope of this instantiation. CurContext = PreviousContext; return Invalid; } bool Sema::InstantiateClassTemplateSpecialization( ClassTemplateSpecializationDecl *ClassTemplateSpec, bool ExplicitInstantiation) { // Perform the actual instantiation on the canonical declaration. ClassTemplateSpec = cast( Context.getCanonicalDecl(ClassTemplateSpec)); // We can only instantiate something that hasn't already been // instantiated or specialized. Fail without any diagnostics: our // caller will provide an error message. if (ClassTemplateSpec->getSpecializationKind() != TSK_Undeclared) return true; // FIXME: Push this class template instantiation onto the // instantiation stack, checking for recursion that exceeds a // certain depth. // FIXME: Perform class template partial specialization to select // the best template. ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate(); CXXRecordDecl *Pattern = Template->getTemplatedDecl(); // Note that this is an instantiation. ClassTemplateSpec->setSpecializationKind( ExplicitInstantiation? TSK_ExplicitInstantiation : TSK_ImplicitInstantiation); return InstantiateClass(ClassTemplateSpec->getLocation(), ClassTemplateSpec, Pattern, ClassTemplateSpec->getTemplateArgs(), ClassTemplateSpec->getNumTemplateArgs()); } /// \brief Instantiate a nested-name-specifier. NestedNameSpecifier * Sema::InstantiateNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { // Instantiate the prefix of this nested name specifier. NestedNameSpecifier *Prefix = NNS->getPrefix(); if (Prefix) { Prefix = InstantiateNestedNameSpecifier(Prefix, Range, TemplateArgs, NumTemplateArgs); if (!Prefix) return 0; } switch (NNS->getKind()) { case NestedNameSpecifier::Identifier: { assert(Prefix && "Can't have an identifier nested-name-specifier with no prefix"); CXXScopeSpec SS; // FIXME: The source location information is all wrong. SS.setRange(Range); SS.setScopeRep(Prefix); return static_cast( ActOnCXXNestedNameSpecifier(0, SS, Range.getEnd(), Range.getEnd(), *NNS->getAsIdentifier())); break; } case NestedNameSpecifier::Namespace: case NestedNameSpecifier::Global: return NNS; case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::TypeSpec: { QualType T = QualType(NNS->getAsType(), 0); if (!T->isDependentType()) return NNS; T = InstantiateType(T, TemplateArgs, NumTemplateArgs, Range.getBegin(), DeclarationName()); if (T.isNull()) return 0; if (T->isRecordType() || (getLangOptions().CPlusPlus0x && T->isEnumeralType())) { assert(T.getCVRQualifiers() == 0 && "Can't get cv-qualifiers here"); return NestedNameSpecifier::Create(Context, Prefix, NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate, T.getTypePtr()); } Diag(Range.getBegin(), diag::err_nested_name_spec_non_tag) << T; return 0; } } // Required to silence a GCC warning return 0; } TemplateName Sema::InstantiateTemplateName(TemplateName Name, SourceLocation Loc, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { if (TemplateTemplateParmDecl *TTP = dyn_cast_or_null( Name.getAsTemplateDecl())) { assert(TTP->getDepth() == 0 && "Cannot reduce depth of a template template parameter"); assert(TTP->getPosition() < NumTemplateArgs && "Wrong # of template args"); assert(TemplateArgs[TTP->getPosition()].getAsDecl() && "Wrong kind of template template argument"); ClassTemplateDecl *ClassTemplate = dyn_cast( TemplateArgs[TTP->getPosition()].getAsDecl()); assert(ClassTemplate && "Expected a class template"); if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { NestedNameSpecifier *NNS = InstantiateNestedNameSpecifier(QTN->getQualifier(), /*FIXME=*/SourceRange(Loc), TemplateArgs, NumTemplateArgs); if (NNS) return Context.getQualifiedTemplateName(NNS, QTN->hasTemplateKeyword(), ClassTemplate); } return TemplateName(ClassTemplate); } else if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { NestedNameSpecifier *NNS = InstantiateNestedNameSpecifier(DTN->getQualifier(), /*FIXME=*/SourceRange(Loc), TemplateArgs, NumTemplateArgs); if (!NNS) // FIXME: Not the best recovery strategy. return Name; if (NNS->isDependent()) return Context.getDependentTemplateName(NNS, DTN->getName()); // Somewhat redundant with ActOnDependentTemplateName. CXXScopeSpec SS; SS.setRange(SourceRange(Loc)); SS.setScopeRep(NNS); TemplateTy Template; TemplateNameKind TNK = isTemplateName(*DTN->getName(), 0, Template, &SS); if (TNK == TNK_Non_template) { Diag(Loc, diag::err_template_kw_refers_to_non_template) << DTN->getName(); return Name; } else if (TNK == TNK_Function_template) { Diag(Loc, diag::err_template_kw_refers_to_non_template) << DTN->getName(); return Name; } return Template.getAsVal(); } // FIXME: Even if we're referring to a Decl that isn't a template // template parameter, we may need to instantiate the outer contexts // of that Decl. However, this won't be needed until we implement // member templates. return Name; }