//===-- lib/Semantics/tools.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Parser/tools.h" #include "flang/Common/Fortran.h" #include "flang/Common/indirection.h" #include "flang/Parser/dump-parse-tree.h" #include "flang/Parser/message.h" #include "flang/Parser/parse-tree.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/semantics.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include "flang/Semantics/type.h" #include "llvm/Support/raw_ostream.h" #include #include #include namespace Fortran::semantics { // Find this or containing scope that matches predicate static const Scope *FindScopeContaining( const Scope &start, std::function predicate) { for (const Scope *scope{&start};; scope = &scope->parent()) { if (predicate(*scope)) { return scope; } if (scope->IsTopLevel()) { return nullptr; } } } const Scope &GetTopLevelUnitContaining(const Scope &start) { CHECK(!start.IsTopLevel()); return DEREF(FindScopeContaining( start, [](const Scope &scope) { return scope.parent().IsTopLevel(); })); } const Scope &GetTopLevelUnitContaining(const Symbol &symbol) { return GetTopLevelUnitContaining(symbol.owner()); } const Scope *FindModuleContaining(const Scope &start) { return FindScopeContaining( start, [](const Scope &scope) { return scope.IsModule(); }); } const Scope *FindModuleFileContaining(const Scope &start) { return FindScopeContaining( start, [](const Scope &scope) { return scope.IsModuleFile(); }); } const Scope &GetProgramUnitContaining(const Scope &start) { CHECK(!start.IsTopLevel()); return DEREF(FindScopeContaining(start, [](const Scope &scope) { switch (scope.kind()) { case Scope::Kind::Module: case Scope::Kind::MainProgram: case Scope::Kind::Subprogram: case Scope::Kind::BlockData: return true; default: return false; } })); } const Scope &GetProgramUnitContaining(const Symbol &symbol) { return GetProgramUnitContaining(symbol.owner()); } const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) { CHECK(!start.IsTopLevel()); return DEREF(FindScopeContaining(start, [](const Scope &scope) { switch (scope.kind()) { case Scope::Kind::Module: case Scope::Kind::MainProgram: case Scope::Kind::Subprogram: case Scope::Kind::BlockData: case Scope::Kind::BlockConstruct: return true; default: return false; } })); } const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) { return GetProgramUnitOrBlockConstructContaining(symbol.owner()); } const Scope *FindPureProcedureContaining(const Scope &start) { // N.B. We only need to examine the innermost containing program unit // because an internal subprogram of a pure subprogram must also // be pure (C1592). if (start.IsTopLevel()) { return nullptr; } else { const Scope &scope{GetProgramUnitContaining(start)}; return IsPureProcedure(scope) ? &scope : nullptr; } } const Scope *FindOpenACCConstructContaining(const Scope *scope) { return scope ? FindScopeContaining(*scope, [](const Scope &s) { return s.kind() == Scope::Kind::OpenACCConstruct; }) : nullptr; } // 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its // infrastructure to detect and handle comparisons on distinct (but "same") // sequence/bind(C) derived types static bool MightBeSameDerivedType( const std::optional &lhsType, const std::optional &rhsType) { return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType); } Tristate IsDefinedAssignment( const std::optional &lhsType, int lhsRank, const std::optional &rhsType, int rhsRank) { if (!lhsType || !rhsType) { return Tristate::No; // error or rhs is untyped } if (lhsType->IsUnlimitedPolymorphic()) { return Tristate::No; } if (rhsType->IsUnlimitedPolymorphic()) { return Tristate::Maybe; } TypeCategory lhsCat{lhsType->category()}; TypeCategory rhsCat{rhsType->category()}; if (rhsRank > 0 && lhsRank != rhsRank) { return Tristate::Yes; } else if (lhsCat != TypeCategory::Derived) { return ToTristate(lhsCat != rhsCat && (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat))); } else if (MightBeSameDerivedType(lhsType, rhsType)) { return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic } else { return Tristate::Yes; } } bool IsIntrinsicRelational(common::RelationalOperator opr, const evaluate::DynamicType &type0, int rank0, const evaluate::DynamicType &type1, int rank1) { if (!evaluate::AreConformable(rank0, rank1)) { return false; } else { auto cat0{type0.category()}; auto cat1{type1.category()}; if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) { // numeric types: EQ/NE always ok, others ok for non-complex return opr == common::RelationalOperator::EQ || opr == common::RelationalOperator::NE || (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex); } else { // not both numeric: only Character is ok return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character; } } } bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) { return IsNumericTypeCategory(type0.category()); } bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0, const evaluate::DynamicType &type1, int rank1) { return evaluate::AreConformable(rank0, rank1) && IsNumericTypeCategory(type0.category()) && IsNumericTypeCategory(type1.category()); } bool IsIntrinsicLogical(const evaluate::DynamicType &type0) { return type0.category() == TypeCategory::Logical; } bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0, const evaluate::DynamicType &type1, int rank1) { return evaluate::AreConformable(rank0, rank1) && type0.category() == TypeCategory::Logical && type1.category() == TypeCategory::Logical; } bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0, const evaluate::DynamicType &type1, int rank1) { return evaluate::AreConformable(rank0, rank1) && type0.category() == TypeCategory::Character && type1.category() == TypeCategory::Character && type0.kind() == type1.kind(); } bool IsGenericDefinedOp(const Symbol &symbol) { const Symbol &ultimate{symbol.GetUltimate()}; if (const auto *generic{ultimate.detailsIf()}) { return generic->kind().IsDefinedOperator(); } else if (const auto *misc{ultimate.detailsIf()}) { return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp; } else { return false; } } bool IsDefinedOperator(SourceName name) { const char *begin{name.begin()}; const char *end{name.end()}; return begin != end && begin[0] == '.' && end[-1] == '.'; } std::string MakeOpName(SourceName name) { std::string result{name.ToString()}; return IsDefinedOperator(name) ? "OPERATOR(" + result + ")" : result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result) : result; } bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) { const auto &objects{block.get().objects()}; return llvm::is_contained(objects, object); } bool IsUseAssociated(const Symbol &symbol, const Scope &scope) { const Scope &owner{GetTopLevelUnitContaining(symbol.GetUltimate().owner())}; return owner.kind() == Scope::Kind::Module && owner != GetTopLevelUnitContaining(scope); } bool DoesScopeContain( const Scope *maybeAncestor, const Scope &maybeDescendent) { return maybeAncestor && !maybeDescendent.IsTopLevel() && FindScopeContaining(maybeDescendent.parent(), [&](const Scope &scope) { return &scope == maybeAncestor; }); } bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) { return DoesScopeContain(maybeAncestor, symbol.owner()); } static const Symbol &FollowHostAssoc(const Symbol &symbol) { for (const Symbol *s{&symbol};;) { const auto *details{s->detailsIf()}; if (!details) { return *s; } s = &details->symbol(); } } bool IsHostAssociated(const Symbol &symbol, const Scope &scope) { return DoesScopeContain( &GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)), GetProgramUnitOrBlockConstructContaining(scope)); } bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) { return DoesScopeContain( &GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)), GetProgramUnitContaining(scope)); } bool IsInStmtFunction(const Symbol &symbol) { if (const Symbol * function{symbol.owner().symbol()}) { return IsStmtFunction(*function); } return false; } bool IsStmtFunctionDummy(const Symbol &symbol) { return IsDummy(symbol) && IsInStmtFunction(symbol); } bool IsStmtFunctionResult(const Symbol &symbol) { return IsFunctionResult(symbol) && IsInStmtFunction(symbol); } bool IsPointerDummy(const Symbol &symbol) { return IsPointer(symbol) && IsDummy(symbol); } bool IsBindCProcedure(const Symbol &original) { const Symbol &symbol{original.GetUltimate()}; if (const auto *procDetails{symbol.detailsIf()}) { if (procDetails->procInterface()) { // procedure component with a BIND(C) interface return IsBindCProcedure(*procDetails->procInterface()); } } return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol); } bool IsBindCProcedure(const Scope &scope) { if (const Symbol * symbol{scope.GetSymbol()}) { return IsBindCProcedure(*symbol); } else { return false; } } static const Symbol *FindPointerComponent( const Scope &scope, std::set &visited) { if (!scope.IsDerivedType()) { return nullptr; } if (!visited.insert(&scope).second) { return nullptr; } // If there's a top-level pointer component, return it for clearer error // messaging. for (const auto &pair : scope) { const Symbol &symbol{*pair.second}; if (IsPointer(symbol)) { return &symbol; } } for (const auto &pair : scope) { const Symbol &symbol{*pair.second}; if (const auto *details{symbol.detailsIf()}) { if (const DeclTypeSpec * type{details->type()}) { if (const DerivedTypeSpec * derived{type->AsDerived()}) { if (const Scope * nested{derived->scope()}) { if (const Symbol * pointer{FindPointerComponent(*nested, visited)}) { return pointer; } } } } } } return nullptr; } const Symbol *FindPointerComponent(const Scope &scope) { std::set visited; return FindPointerComponent(scope, visited); } const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) { if (const Scope * scope{derived.scope()}) { return FindPointerComponent(*scope); } else { return nullptr; } } const Symbol *FindPointerComponent(const DeclTypeSpec &type) { if (const DerivedTypeSpec * derived{type.AsDerived()}) { return FindPointerComponent(*derived); } else { return nullptr; } } const Symbol *FindPointerComponent(const DeclTypeSpec *type) { return type ? FindPointerComponent(*type) : nullptr; } const Symbol *FindPointerComponent(const Symbol &symbol) { return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType()); } // C1594 specifies several ways by which an object might be globally visible. const Symbol *FindExternallyVisibleObject( const Symbol &object, const Scope &scope, bool isPointerDefinition) { // TODO: Storage association with any object for which this predicate holds, // once EQUIVALENCE is supported. const Symbol &ultimate{GetAssociationRoot(object)}; if (IsDummy(ultimate)) { if (IsIntentIn(ultimate)) { return &ultimate; } if (!isPointerDefinition && IsPointer(ultimate) && IsPureProcedure(ultimate.owner()) && IsFunction(ultimate.owner())) { return &ultimate; } } else if (ultimate.owner().IsDerivedType()) { return nullptr; } else if (&GetProgramUnitContaining(ultimate) != &GetProgramUnitContaining(scope)) { return &object; } else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) { return block; } return nullptr; } const Symbol &BypassGeneric(const Symbol &symbol) { const Symbol &ultimate{symbol.GetUltimate()}; if (const auto *generic{ultimate.detailsIf()}) { if (const Symbol * specific{generic->specific()}) { return *specific; } } return symbol; } bool ExprHasTypeCategory( const SomeExpr &expr, const common::TypeCategory &type) { auto dynamicType{expr.GetType()}; return dynamicType && dynamicType->category() == type; } bool ExprTypeKindIsDefault( const SomeExpr &expr, const SemanticsContext &context) { auto dynamicType{expr.GetType()}; return dynamicType && dynamicType->category() != common::TypeCategory::Derived && dynamicType->kind() == context.GetDefaultKind(dynamicType->category()); } // If an analyzed expr or assignment is missing, dump the node and die. template static void CheckMissingAnalysis( bool crash, SemanticsContext *context, const T &x) { if (crash && !(context && context->AnyFatalError())) { std::string buf; llvm::raw_string_ostream ss{buf}; ss << "node has not been analyzed:\n"; parser::DumpTree(ss, x); common::die(ss.str().c_str()); } } const SomeExpr *GetExprHelper::Get(const parser::Expr &x) { CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; } const SomeExpr *GetExprHelper::Get(const parser::Variable &x) { CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; } const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) { CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; } const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) { CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; } const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) { CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; } const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) { return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) : nullptr; } const evaluate::Assignment *GetAssignment( const parser::PointerAssignmentStmt &x) { return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) : nullptr; } const Symbol *FindInterface(const Symbol &symbol) { return common::visit( common::visitors{ [](const ProcEntityDetails &details) { const Symbol *interface { details.procInterface() }; return interface ? FindInterface(*interface) : nullptr; }, [](const ProcBindingDetails &details) { return FindInterface(details.symbol()); }, [&](const SubprogramDetails &) { return &symbol; }, [](const UseDetails &details) { return FindInterface(details.symbol()); }, [](const HostAssocDetails &details) { return FindInterface(details.symbol()); }, [](const GenericDetails &details) { return details.specific() ? FindInterface(*details.specific()) : nullptr; }, [](const auto &) -> const Symbol * { return nullptr; }, }, symbol.details()); } const Symbol *FindSubprogram(const Symbol &symbol) { return common::visit( common::visitors{ [&](const ProcEntityDetails &details) -> const Symbol * { if (details.procInterface()) { return FindSubprogram(*details.procInterface()); } else { return &symbol; } }, [](const ProcBindingDetails &details) { return FindSubprogram(details.symbol()); }, [&](const SubprogramDetails &) { return &symbol; }, [](const UseDetails &details) { return FindSubprogram(details.symbol()); }, [](const HostAssocDetails &details) { return FindSubprogram(details.symbol()); }, [](const GenericDetails &details) { return details.specific() ? FindSubprogram(*details.specific()) : nullptr; }, [](const auto &) -> const Symbol * { return nullptr; }, }, symbol.details()); } const Symbol *FindOverriddenBinding(const Symbol &symbol) { if (symbol.has()) { if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) { if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) { if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) { if (const Symbol * overridden{parentScope->FindComponent(symbol.name())}) { // 7.5.7.3 p1: only accessible bindings are overridden if (!overridden->attrs().test(Attr::PRIVATE) || (FindModuleContaining(overridden->owner()) == FindModuleContaining(symbol.owner()))) { return overridden; } } } } } } return nullptr; } const Symbol *FindGlobal(const Symbol &original) { const Symbol &ultimate{original.GetUltimate()}; if (ultimate.owner().IsGlobal()) { return &ultimate; } bool isLocal{false}; if (IsDummy(ultimate)) { } else if (IsPointer(ultimate)) { } else if (ultimate.has()) { isLocal = IsExternal(ultimate); } else if (const auto *subp{ultimate.detailsIf()}) { isLocal = subp->isInterface(); } if (isLocal) { const std::string *bind{ultimate.GetBindName()}; if (!bind || ultimate.name() == *bind) { const Scope &globalScope{ultimate.owner().context().globalScope()}; if (auto iter{globalScope.find(ultimate.name())}; iter != globalScope.end()) { const Symbol &global{*iter->second}; const std::string *globalBind{global.GetBindName()}; if (!globalBind || global.name() == *globalBind) { return &global; } } } } return nullptr; } const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) { return FindParentTypeSpec(derived.typeSymbol()); } const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) { if (const DerivedTypeSpec * derived{decl.AsDerived()}) { return FindParentTypeSpec(*derived); } else { return nullptr; } } const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) { if (scope.kind() == Scope::Kind::DerivedType) { if (const auto *symbol{scope.symbol()}) { return FindParentTypeSpec(*symbol); } } return nullptr; } const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) { if (const Scope * scope{symbol.scope()}) { if (const auto *details{symbol.detailsIf()}) { if (const Symbol * parent{details->GetParentComponent(*scope)}) { return parent->GetType(); } } } return nullptr; } const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) { const Symbol &ultimate{symbol.GetUltimate()}; for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) { for (const EquivalenceObject &object : set) { if (object.symbol == ultimate) { return &set; } } } return nullptr; } bool IsOrContainsEventOrLockComponent(const Symbol &original) { const Symbol &symbol{ResolveAssociations(original)}; if (const auto *details{symbol.detailsIf()}) { if (const DeclTypeSpec * type{details->type()}) { if (const DerivedTypeSpec * derived{type->AsDerived()}) { return IsEventTypeOrLockType(derived) || FindEventOrLockPotentialComponent(*derived); } } } return false; } // Check this symbol suitable as a type-bound procedure - C769 bool CanBeTypeBoundProc(const Symbol &symbol) { if (IsDummy(symbol) || IsProcedurePointer(symbol)) { return false; } else if (symbol.has()) { return symbol.owner().kind() == Scope::Kind::Module; } else if (auto *details{symbol.detailsIf()}) { if (details->isInterface()) { return !symbol.attrs().test(Attr::ABSTRACT); } else { return symbol.owner().kind() == Scope::Kind::Module; } } else if (const auto *proc{symbol.detailsIf()}) { return !symbol.attrs().test(Attr::INTRINSIC) && proc->HasExplicitInterface(); } else { return false; } } bool HasDeclarationInitializer(const Symbol &symbol) { if (IsNamedConstant(symbol)) { return false; } else if (const auto *object{symbol.detailsIf()}) { return object->init().has_value(); } else if (const auto *proc{symbol.detailsIf()}) { return proc->init().has_value(); } else { return false; } } bool IsInitialized(const Symbol &symbol, bool ignoreDataStatements, bool ignoreAllocatable, bool ignorePointer) { if (!ignoreAllocatable && IsAllocatable(symbol)) { return true; } else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) { return true; } else if (HasDeclarationInitializer(symbol)) { return true; } else if (IsPointer(symbol)) { return !ignorePointer; } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol)) { return false; } else if (const auto *object{symbol.detailsIf()}) { if (!object->isDummy() && object->type()) { if (const auto *derived{object->type()->AsDerived()}) { return derived->HasDefaultInitialization( ignoreAllocatable, ignorePointer); } } } return false; } bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) { if (IsAllocatable(symbol) || IsAutomatic(symbol)) { return true; } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) || IsPointer(symbol)) { return false; } else if (const auto *object{symbol.detailsIf()}) { if (!object->isDummy() && object->type()) { if (const auto *derived{object->type()->AsDerived()}) { return &derived->typeSymbol() != derivedTypeSymbol && derived->HasDestruction(); } } } return false; } bool HasIntrinsicTypeName(const Symbol &symbol) { std::string name{symbol.name().ToString()}; if (name == "doubleprecision") { return true; } else if (name == "derived") { return false; } else { for (int i{0}; i != common::TypeCategory_enumSize; ++i) { if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) { return true; } } return false; } } bool IsSeparateModuleProcedureInterface(const Symbol *symbol) { if (symbol && symbol->attrs().test(Attr::MODULE)) { if (auto *details{symbol->detailsIf()}) { return details->isInterface(); } } return false; } SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &spec) { SymbolVector result; const Symbol &typeSymbol{spec.typeSymbol()}; if (const auto *derived{typeSymbol.detailsIf()}) { for (const auto &pair : derived->finals()) { const Symbol &subr{*pair.second}; // Errors in FINAL subroutines are caught in CheckFinal // in check-declarations.cpp. if (const auto *subprog{subr.detailsIf()}; subprog && subprog->dummyArgs().size() == 1) { if (const Symbol * arg{subprog->dummyArgs()[0]}) { if (const DeclTypeSpec * type{arg->GetType()}) { if (type->category() == DeclTypeSpec::TypeDerived && evaluate::AreSameDerivedType(spec, type->derivedTypeSpec())) { result.emplace_back(subr); } } } } } } return result; } const Symbol *IsFinalizable(const Symbol &symbol, std::set *inProgress, bool withImpureFinalizer) { if (IsPointer(symbol) || evaluate::IsAssumedRank(symbol)) { return nullptr; } if (const auto *object{symbol.detailsIf()}) { if (object->isDummy() && !IsIntentOut(symbol)) { return nullptr; } const DeclTypeSpec *type{object->type()}; if (const DerivedTypeSpec * typeSpec{type ? type->AsDerived() : nullptr}) { return IsFinalizable( *typeSpec, inProgress, withImpureFinalizer, symbol.Rank()); } } return nullptr; } const Symbol *IsFinalizable(const DerivedTypeSpec &derived, std::set *inProgress, bool withImpureFinalizer, std::optional rank) { const Symbol *elemental{nullptr}; for (auto ref : FinalsForDerivedTypeInstantiation(derived)) { const Symbol *symbol{&ref->GetUltimate()}; if (const auto *binding{symbol->detailsIf()}) { symbol = &binding->symbol(); } if (const auto *proc{symbol->detailsIf()}) { symbol = proc->procInterface(); } if (!symbol) { } else if (IsElementalProcedure(*symbol)) { elemental = symbol; } else { if (rank) { if (const SubprogramDetails * subp{symbol->detailsIf()}) { if (const auto &args{subp->dummyArgs()}; !args.empty() && args.at(0) && !evaluate::IsAssumedRank(*args.at(0)) && args.at(0)->Rank() != *rank) { continue; // not a finalizer for this rank } } } if (!withImpureFinalizer || !IsPureProcedure(*symbol)) { return symbol; } // Found non-elemental pure finalizer of matching rank, but still // need to check components for an impure finalizer. elemental = nullptr; break; } } if (elemental && (!withImpureFinalizer || !IsPureProcedure(*elemental))) { return elemental; } // Check components (including ancestors) std::set basis; if (inProgress) { if (inProgress->find(&derived) != inProgress->end()) { return nullptr; // don't loop on recursive type } } else { inProgress = &basis; } auto iterator{inProgress->insert(&derived).first}; const Symbol *result{nullptr}; for (const Symbol &component : PotentialComponentIterator{derived}) { result = IsFinalizable(component, inProgress, withImpureFinalizer); if (result) { break; } } inProgress->erase(iterator); return result; } static const Symbol *HasImpureFinal( const DerivedTypeSpec &derived, std::optional rank) { return IsFinalizable(derived, nullptr, /*withImpureFinalizer=*/true, rank); } const Symbol *HasImpureFinal(const Symbol &original) { const Symbol &symbol{ResolveAssociations(original)}; if (symbol.has()) { if (const DeclTypeSpec * symType{symbol.GetType()}) { if (const DerivedTypeSpec * derived{symType->AsDerived()}) { // finalizable assumed-rank not allowed (C839) return evaluate::IsAssumedRank(symbol) ? nullptr : HasImpureFinal(*derived, symbol.Rank()); } } } return nullptr; } bool MayRequireFinalization(const DerivedTypeSpec &derived) { return IsFinalizable(derived) || FindPolymorphicAllocatableUltimateComponent(derived); } bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived) { DirectComponentIterator directs{derived}; return std::any_of(directs.begin(), directs.end(), IsAllocatable); } bool IsAssumedLengthCharacter(const Symbol &symbol) { if (const DeclTypeSpec * type{symbol.GetType()}) { return type->category() == DeclTypeSpec::Character && type->characterTypeSpec().length().isAssumed(); } else { return false; } } bool IsInBlankCommon(const Symbol &symbol) { const Symbol *block{FindCommonBlockContaining(symbol)}; return block && block->name().empty(); } // C722 and C723: For a function to be assumed length, it must be external and // of CHARACTER type bool IsExternal(const Symbol &symbol) { return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External; } // Most scopes have no EQUIVALENCE, and this function is a fast no-op for them. std::list> GetStorageAssociations(const Scope &scope) { UnorderedSymbolSet distinct; for (const EquivalenceSet &set : scope.equivalenceSets()) { for (const EquivalenceObject &object : set) { distinct.emplace(object.symbol); } } // This set is ordered by ascending offsets, with ties broken by greatest // size. A multiset is used here because multiple symbols may have the // same offset and size; the symbols in the set, however, are distinct. std::multiset associated; for (SymbolRef ref : distinct) { associated.emplace(*ref); } std::list> result; std::size_t limit{0}; const Symbol *currentCommon{nullptr}; for (const Symbol &symbol : associated) { const Symbol *thisCommon{FindCommonBlockContaining(symbol)}; if (result.empty() || symbol.offset() >= limit || thisCommon != currentCommon) { // Start a new group result.emplace_back(std::list{}); limit = 0; currentCommon = thisCommon; } result.back().emplace_back(symbol); limit = std::max(limit, symbol.offset() + symbol.size()); } return result; } bool IsModuleProcedure(const Symbol &symbol) { return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module; } class ImageControlStmtHelper { using ImageControlStmts = std::variant; public: template bool operator()(const T &) { return common::HasMember; } template bool operator()(const common::Indirection &x) { return (*this)(x.value()); } template bool operator()(const parser::Statement &x) { return (*this)(x.statement); } bool operator()(const parser::AllocateStmt &stmt) { const auto &allocationList{std::get>(stmt.t)}; for (const auto &allocation : allocationList) { const auto &allocateObject{ std::get(allocation.t)}; if (IsCoarrayObject(allocateObject)) { return true; } } return false; } bool operator()(const parser::DeallocateStmt &stmt) { const auto &allocateObjectList{ std::get>(stmt.t)}; for (const auto &allocateObject : allocateObjectList) { if (IsCoarrayObject(allocateObject)) { return true; } } return false; } bool operator()(const parser::CallStmt &stmt) { const auto &procedureDesignator{ std::get(stmt.call.t)}; if (auto *name{std::get_if(&procedureDesignator.u)}) { // TODO: also ensure that the procedure is, in fact, an intrinsic if (name->source == "move_alloc") { const auto &args{ std::get>(stmt.call.t)}; if (!args.empty()) { const parser::ActualArg &actualArg{ std::get(args.front().t)}; if (const auto *argExpr{ std::get_if>( &actualArg.u)}) { return HasCoarray(argExpr->value()); } } } } return false; } bool operator()(const parser::StopStmt &stmt) { // STOP is an image control statement; ERROR STOP is not return std::get(stmt.t) == parser::StopStmt::Kind::Stop; } bool operator()(const parser::IfStmt &stmt) { return (*this)( std::get>(stmt.t) .statement); } bool operator()(const parser::ActionStmt &stmt) { return common::visit(*this, stmt.u); } private: bool IsCoarrayObject(const parser::AllocateObject &allocateObject) { const parser::Name &name{GetLastName(allocateObject)}; return name.symbol && evaluate::IsCoarray(*name.symbol); } }; bool IsImageControlStmt(const parser::ExecutableConstruct &construct) { return common::visit(ImageControlStmtHelper{}, construct.u); } std::optional GetImageControlStmtCoarrayMsg( const parser::ExecutableConstruct &construct) { if (const auto *actionStmt{ std::get_if>(&construct.u)}) { return common::visit( common::visitors{ [](const common::Indirection &) -> std::optional { return "ALLOCATE of a coarray is an image control" " statement"_en_US; }, [](const common::Indirection &) -> std::optional { return "DEALLOCATE of a coarray is an image control" " statement"_en_US; }, [](const common::Indirection &) -> std::optional { return "MOVE_ALLOC of a coarray is an image control" " statement "_en_US; }, [](const auto &) -> std::optional { return std::nullopt; }, }, actionStmt->statement.u); } return std::nullopt; } parser::CharBlock GetImageControlStmtLocation( const parser::ExecutableConstruct &executableConstruct) { return common::visit( common::visitors{ [](const common::Indirection &construct) { return std::get>( construct.value().t) .source; }, [](const common::Indirection &construct) { return std::get>( construct.value().t) .source; }, [](const parser::Statement &actionStmt) { return actionStmt.source; }, [](const auto &) { return parser::CharBlock{}; }, }, executableConstruct.u); } bool HasCoarray(const parser::Expr &expression) { if (const auto *expr{GetExpr(nullptr, expression)}) { for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) { if (evaluate::IsCoarray(symbol)) { return true; } } } return false; } bool IsAssumedType(const Symbol &symbol) { if (const DeclTypeSpec * type{symbol.GetType()}) { return type->IsAssumedType(); } return false; } bool IsPolymorphic(const Symbol &symbol) { if (const DeclTypeSpec * type{symbol.GetType()}) { return type->IsPolymorphic(); } return false; } bool IsUnlimitedPolymorphic(const Symbol &symbol) { if (const DeclTypeSpec * type{symbol.GetType()}) { return type->IsUnlimitedPolymorphic(); } return false; } bool IsPolymorphicAllocatable(const Symbol &symbol) { return IsAllocatable(symbol) && IsPolymorphic(symbol); } const Scope *FindCUDADeviceContext(const Scope *scope) { return !scope ? nullptr : FindScopeContaining(*scope, [](const Scope &s) { return IsCUDADeviceContext(&s); }); } std::optional GetCUDADataAttr(const Symbol *symbol) { const auto *object{ symbol ? symbol->detailsIf() : nullptr}; return object ? object->cudaDataAttr() : std::nullopt; } std::optional CheckAccessibleSymbol( const Scope &scope, const Symbol &symbol) { if (symbol.attrs().test(Attr::PRIVATE)) { if (FindModuleFileContaining(scope)) { // Don't enforce component accessibility checks in module files; // there may be forward-substituted named constants of derived type // whose structure constructors reference private components. } else if (const Scope * moduleScope{FindModuleContaining(symbol.owner())}) { if (!moduleScope->Contains(scope)) { return parser::MessageFormattedText{ "PRIVATE name '%s' is only accessible within module '%s'"_err_en_US, symbol.name(), moduleScope->GetName().value()}; } } } return std::nullopt; } std::list OrderParameterNames(const Symbol &typeSymbol) { std::list result; if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { result = OrderParameterNames(spec->typeSymbol()); } const auto ¶mNames{typeSymbol.get().paramNames()}; result.insert(result.end(), paramNames.begin(), paramNames.end()); return result; } SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) { SymbolVector result; if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { result = OrderParameterDeclarations(spec->typeSymbol()); } const auto ¶mDecls{typeSymbol.get().paramDecls()}; result.insert(result.end(), paramDecls.begin(), paramDecls.end()); return result; } const DeclTypeSpec &FindOrInstantiateDerivedType( Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) { spec.EvaluateParameters(scope.context()); if (const DeclTypeSpec * type{scope.FindInstantiatedDerivedType(spec, category)}) { return *type; } // Create a new instantiation of this parameterized derived type // for this particular distinct set of actual parameter values. DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))}; type.derivedTypeSpec().Instantiate(scope); return type; } const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) { if (proc) { if (const auto *subprogram{proc->detailsIf()}) { if (const Symbol * iface{subprogram->moduleInterface()}) { return iface; } } } return nullptr; } ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2 const Symbol &ultimate{symbol.GetUltimate()}; if (!IsProcedure(ultimate)) { return ProcedureDefinitionClass::None; } else if (ultimate.attrs().test(Attr::INTRINSIC)) { return ProcedureDefinitionClass::Intrinsic; } else if (IsDummy(ultimate)) { return ProcedureDefinitionClass::Dummy; } else if (IsProcedurePointer(symbol)) { return ProcedureDefinitionClass::Pointer; } else if (ultimate.attrs().test(Attr::EXTERNAL)) { return ProcedureDefinitionClass::External; } else if (const auto *nameDetails{ ultimate.detailsIf()}) { switch (nameDetails->kind()) { case SubprogramKind::Module: return ProcedureDefinitionClass::Module; case SubprogramKind::Internal: return ProcedureDefinitionClass::Internal; } } else if (const Symbol * subp{FindSubprogram(symbol)}) { if (const auto *subpDetails{subp->detailsIf()}) { if (subpDetails->stmtFunction()) { return ProcedureDefinitionClass::StatementFunction; } } switch (ultimate.owner().kind()) { case Scope::Kind::Global: case Scope::Kind::IntrinsicModules: return ProcedureDefinitionClass::External; case Scope::Kind::Module: return ProcedureDefinitionClass::Module; case Scope::Kind::MainProgram: case Scope::Kind::Subprogram: return ProcedureDefinitionClass::Internal; default: break; } } return ProcedureDefinitionClass::None; } // ComponentIterator implementation template typename ComponentIterator::const_iterator ComponentIterator::const_iterator::Create( const DerivedTypeSpec &derived) { const_iterator it{}; it.componentPath_.emplace_back(derived); it.Increment(); // cue up first relevant component, if any return it; } template const DerivedTypeSpec * ComponentIterator::const_iterator::PlanComponentTraversal( const Symbol &component) const { if (const auto *details{component.detailsIf()}) { if (const DeclTypeSpec * type{details->type()}) { if (const auto *derived{type->AsDerived()}) { bool traverse{false}; if constexpr (componentKind == ComponentKind::Ordered) { // Order Component (only visit parents) traverse = component.test(Symbol::Flag::ParentComp); } else if constexpr (componentKind == ComponentKind::Direct) { traverse = !IsAllocatableOrObjectPointer(&component); } else if constexpr (componentKind == ComponentKind::Ultimate) { traverse = !IsAllocatableOrObjectPointer(&component); } else if constexpr (componentKind == ComponentKind::Potential) { traverse = !IsPointer(component); } else if constexpr (componentKind == ComponentKind::Scope) { traverse = !IsAllocatableOrObjectPointer(&component); } else if constexpr (componentKind == ComponentKind::PotentialAndPointer) { traverse = !IsPointer(component); } if (traverse) { const Symbol &newTypeSymbol{derived->typeSymbol()}; // Avoid infinite loop if the type is already part of the types // being visited. It is possible to have "loops in type" because // C744 does not forbid to use not yet declared type for // ALLOCATABLE or POINTER components. for (const auto &node : componentPath_) { if (&newTypeSymbol == &node.GetTypeSymbol()) { return nullptr; } } return derived; } } } // intrinsic & unlimited polymorphic not traversable } return nullptr; } template static bool StopAtComponentPre(const Symbol &component) { if constexpr (componentKind == ComponentKind::Ordered) { // Parent components need to be iterated upon after their // sub-components in structure constructor analysis. return !component.test(Symbol::Flag::ParentComp); } else if constexpr (componentKind == ComponentKind::Direct) { return true; } else if constexpr (componentKind == ComponentKind::Ultimate) { return component.has() || IsAllocatableOrObjectPointer(&component) || (component.has() && component.get().type() && component.get().type()->AsIntrinsic()); } else if constexpr (componentKind == ComponentKind::Potential) { return !IsPointer(component); } else if constexpr (componentKind == ComponentKind::PotentialAndPointer) { return true; } } template static bool StopAtComponentPost(const Symbol &component) { return componentKind == ComponentKind::Ordered && component.test(Symbol::Flag::ParentComp); } template void ComponentIterator::const_iterator::Increment() { while (!componentPath_.empty()) { ComponentPathNode &deepest{componentPath_.back()}; if (deepest.component()) { if (!deepest.descended()) { deepest.set_descended(true); if (const DerivedTypeSpec * derived{PlanComponentTraversal(*deepest.component())}) { componentPath_.emplace_back(*derived); continue; } } else if (!deepest.visited()) { deepest.set_visited(true); return; // this is the next component to visit, after descending } } auto &nameIterator{deepest.nameIterator()}; if (nameIterator == deepest.nameEnd()) { componentPath_.pop_back(); } else if constexpr (componentKind == ComponentKind::Scope) { deepest.set_component(*nameIterator++->second); deepest.set_descended(false); deepest.set_visited(true); return; // this is the next component to visit, before descending } else { const Scope &scope{deepest.GetScope()}; auto scopeIter{scope.find(*nameIterator++)}; if (scopeIter != scope.cend()) { const Symbol &component{*scopeIter->second}; deepest.set_component(component); deepest.set_descended(false); if (StopAtComponentPre(component)) { deepest.set_visited(true); return; // this is the next component to visit, before descending } else { deepest.set_visited(!StopAtComponentPost(component)); } } } } } template std::string ComponentIterator::const_iterator::BuildResultDesignatorName() const { std::string designator; for (const auto &node : componentPath_) { designator += "%" + DEREF(node.component()).name().ToString(); } return designator; } template class ComponentIterator; template class ComponentIterator; template class ComponentIterator; template class ComponentIterator; template class ComponentIterator; template class ComponentIterator; UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent( const DerivedTypeSpec &derived) { UltimateComponentIterator ultimates{derived}; return std::find_if(ultimates.begin(), ultimates.end(), [](const Symbol &symbol) { return evaluate::IsCoarray(symbol); }); } UltimateComponentIterator::const_iterator FindPointerUltimateComponent( const DerivedTypeSpec &derived) { UltimateComponentIterator ultimates{derived}; return std::find_if(ultimates.begin(), ultimates.end(), IsPointer); } PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent( const DerivedTypeSpec &derived) { PotentialComponentIterator potentials{derived}; return std::find_if( potentials.begin(), potentials.end(), [](const Symbol &component) { if (const auto *details{component.detailsIf()}) { const DeclTypeSpec *type{details->type()}; return type && IsEventTypeOrLockType(type->AsDerived()); } return false; }); } UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent( const DerivedTypeSpec &derived) { UltimateComponentIterator ultimates{derived}; return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable); } DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent( const DerivedTypeSpec &derived) { DirectComponentIterator directs{derived}; return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer); } UltimateComponentIterator::const_iterator FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) { UltimateComponentIterator ultimates{derived}; return std::find_if( ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable); } const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived, const std::function &predicate) { UltimateComponentIterator ultimates{derived}; if (auto it{std::find_if(ultimates.begin(), ultimates.end(), [&predicate](const Symbol &component) -> bool { return predicate(component); })}) { return &*it; } return nullptr; } const Symbol *FindUltimateComponent(const Symbol &symbol, const std::function &predicate) { if (predicate(symbol)) { return &symbol; } else if (const auto *object{symbol.detailsIf()}) { if (const auto *type{object->type()}) { if (const auto *derived{type->AsDerived()}) { return FindUltimateComponent(*derived, predicate); } } } return nullptr; } const Symbol *FindImmediateComponent(const DerivedTypeSpec &type, const std::function &predicate) { if (const Scope * scope{type.scope()}) { const Symbol *parent{nullptr}; for (const auto &pair : *scope) { const Symbol *symbol{&*pair.second}; if (predicate(*symbol)) { return symbol; } if (symbol->test(Symbol::Flag::ParentComp)) { parent = symbol; } } if (parent) { if (const auto *object{parent->detailsIf()}) { if (const auto *type{object->type()}) { if (const auto *derived{type->AsDerived()}) { return FindImmediateComponent(*derived, predicate); } } } } } return nullptr; } const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) { if (IsFunctionResult(symbol)) { if (const Symbol * function{symbol.owner().symbol()}) { if (symbol.name() == function->name()) { return function; } } // Check ENTRY result symbols too const Scope &outer{symbol.owner().parent()}; auto iter{outer.find(symbol.name())}; if (iter != outer.end()) { const Symbol &outerSym{*iter->second}; if (const auto *subp{outerSym.detailsIf()}) { if (subp->entryScope() == &symbol.owner() && symbol.name() == outerSym.name()) { return &outerSym; } } } } return nullptr; } void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) { checkLabelUse(gotoStmt.v); } void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) { for (auto &i : std::get>(computedGotoStmt.t)) { checkLabelUse(i); } } void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) { checkLabelUse(std::get<1>(arithmeticIfStmt.t)); checkLabelUse(std::get<2>(arithmeticIfStmt.t)); checkLabelUse(std::get<3>(arithmeticIfStmt.t)); } void LabelEnforce::Post(const parser::AssignStmt &assignStmt) { checkLabelUse(std::get(assignStmt.t)); } void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) { for (auto &i : std::get>(assignedGotoStmt.t)) { checkLabelUse(i); } } void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) { checkLabelUse(altReturnSpec.v); } void LabelEnforce::Post(const parser::ErrLabel &errLabel) { checkLabelUse(errLabel.v); } void LabelEnforce::Post(const parser::EndLabel &endLabel) { checkLabelUse(endLabel.v); } void LabelEnforce::Post(const parser::EorLabel &eorLabel) { checkLabelUse(eorLabel.v); } void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) { if (labels_.find(labelUsed) == labels_.end()) { SayWithConstruct(context_, currentStatementSourcePosition_, parser::MessageFormattedText{ "Control flow escapes from %s"_err_en_US, construct_}, constructSourcePosition_); } } parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() { return {"Enclosing %s statement"_en_US, construct_}; } void LabelEnforce::SayWithConstruct(SemanticsContext &context, parser::CharBlock stmtLocation, parser::MessageFormattedText &&message, parser::CharBlock constructLocation) { context.Say(stmtLocation, message) .Attach(constructLocation, GetEnclosingConstructMsg()); } bool HasAlternateReturns(const Symbol &subprogram) { for (const auto *dummyArg : subprogram.get().dummyArgs()) { if (!dummyArg) { return true; } } return false; } bool IsAutomaticallyDestroyed(const Symbol &symbol) { return symbol.has() && (symbol.owner().kind() == Scope::Kind::Subprogram || symbol.owner().kind() == Scope::Kind::BlockConstruct) && (!IsDummy(symbol) || IsIntentOut(symbol)) && !IsPointer(symbol) && !IsSaved(symbol) && !FindCommonBlockContaining(symbol); } const std::optional &MaybeGetNodeName( const ConstructNode &construct) { return common::visit( common::visitors{ [&](const parser::BlockConstruct *blockConstruct) -> const std::optional & { return std::get<0>(blockConstruct->t).statement.v; }, [&](const auto *a) -> const std::optional & { return std::get<0>(std::get<0>(a->t).statement.t); }, }, construct); } std::optional ToArraySpec( evaluate::FoldingContext &context, const evaluate::Shape &shape) { if (auto extents{evaluate::AsConstantExtents(context, shape)}) { ArraySpec result; for (const auto &extent : *extents) { result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent})); } return {std::move(result)}; } else { return std::nullopt; } } std::optional ToArraySpec(evaluate::FoldingContext &context, const std::optional &shape) { return shape ? ToArraySpec(context, *shape) : std::nullopt; } static const DeclTypeSpec *GetDtvArgTypeSpec(const Symbol &proc) { if (const auto *subp{proc.detailsIf()}; subp && !subp->dummyArgs().empty()) { if (const auto *arg{subp->dummyArgs()[0]}) { return arg->GetType(); } } return nullptr; } const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &proc) { if (const auto *type{GetDtvArgTypeSpec(proc)}) { return type->AsDerived(); } else { return nullptr; } } bool HasDefinedIo(common::DefinedIo which, const DerivedTypeSpec &derived, const Scope *scope) { if (const Scope * dtScope{derived.scope()}) { for (const auto &pair : *dtScope) { const Symbol &symbol{*pair.second}; if (const auto *generic{symbol.detailsIf()}) { GenericKind kind{generic->kind()}; if (const auto *io{std::get_if(&kind.u)}) { if (*io == which) { return true; // type-bound GENERIC exists } } } } } if (scope) { SourceName name{GenericKind::AsFortran(which)}; evaluate::DynamicType dyDerived{derived}; for (; scope && !scope->IsGlobal(); scope = &scope->parent()) { auto iter{scope->find(name)}; if (iter != scope->end()) { const auto &generic{iter->second->GetUltimate().get()}; for (auto ref : generic.specificProcs()) { const Symbol &procSym{ref->GetUltimate()}; if (const DeclTypeSpec * dtSpec{GetDtvArgTypeSpec(procSym)}) { if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) { if (dyDummy->IsTkCompatibleWith(dyDerived)) { return true; // GENERIC or INTERFACE not in type } } } } } } } return false; } void WarnOnDeferredLengthCharacterScalar(SemanticsContext &context, const SomeExpr *expr, parser::CharBlock at, const char *what) { if (context.languageFeatures().ShouldWarn( common::UsageWarning::F202XAllocatableBreakingChange)) { if (const Symbol * symbol{evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)}) { const Symbol &ultimate{ResolveAssociations(*symbol)}; if (const DeclTypeSpec * type{ultimate.GetType()}; type && type->category() == DeclTypeSpec::Category::Character && type->characterTypeSpec().length().isDeferred() && IsAllocatable(ultimate) && ultimate.Rank() == 0) { context.Say(at, "The deferred length allocatable character scalar variable '%s' may be reallocated to a different length under the new Fortran 202X standard semantics for %s"_port_en_US, symbol->name(), what); } } } } bool CouldBeDataPointerValuedFunction(const Symbol *original) { if (original) { const Symbol &ultimate{original->GetUltimate()}; if (const Symbol * result{FindFunctionResult(ultimate)}) { return IsPointer(*result) && !IsProcedure(*result); } if (const auto *generic{ultimate.detailsIf()}) { for (const SymbolRef &ref : generic->specificProcs()) { if (CouldBeDataPointerValuedFunction(&*ref)) { return true; } } } } return false; } std::string GetModuleOrSubmoduleName(const Symbol &symbol) { const auto &details{symbol.get()}; std::string result{symbol.name().ToString()}; if (details.ancestor() && details.ancestor()->symbol()) { result = details.ancestor()->symbol()->name().ToString() + ':' + result; } return result; } std::string GetCommonBlockObjectName(const Symbol &common, bool underscoring) { if (const std::string * bind{common.GetBindName()}) { return *bind; } if (common.name().empty()) { return Fortran::common::blankCommonObjectName; } return underscoring ? common.name().ToString() + "_"s : common.name().ToString(); } } // namespace Fortran::semantics